

Avista – 2020 Natural Gas Integrated Resource Plan

Technical Advisory Committee # 3 September 30, 2020

2020 Natural Gas IRP Schedule

TAC 1: Wednesday, June 17, 2020: TAC meeting expectations, 2020 IRP process and schedule, energy efficiency update, actions from 2018 IRP, and a Winter of 2018-2019 review. Procurement Plan and Resource Optimization benefits. fugitive Emissions, Weather Analysis, Weather Planning Standard

TAC 2 (Dual Meeting with Power side): Thursday, August 6, 2020: Market Analysis, Price Forecasts, Cost Of Carbon, Environmental Policies

• Demand Results and Forecasting – August 18, 2020

TAC 3: Wednesday, September 30, 2020: Distribution, Avista's current supply-side resources overview, supply side resource options, renewable resources, Carbon cost, price elasticity, sensitivities and portfolio selection modeling.

TAC 4: Wednesday, November 18, 2020: CPA results from AEG & ETO, review assumptions and action items, final modeling results, portfolio risk analysis and 2020 Action Plan.

Agenda

- Introductions/Agenda
- Avista and Carbon Reduction
- Current Supply Side Resources
- BREAK
- Renewable Natural Gas
- Hydrogen
- LUNCH BREAK
- Distribution
- Supply Side Resource Options
- Carbon Costs/Price Elasticity
- Sensitivities

Topic Length	Start Time	_	E
30 minutes	9:00 AM	—	
15 minutes	9:30 AM	—	
30 minutes	9:45 AM	—	1
15 minutes	10:15 AM	_	1
60 minutes	10:30 AM	_	
30 minutes	11:30 AM	—	
60 minutes	12:00 PM	_	
60 minutes	1:00 PM	—	
30 minutes	2:00 PM	—	
30 minutes	2:30 PM	—	
30 minutes	3:00 PM	_	

ne – End Time 1 – 9:30 AM 1 – 9:45 AM

- 10:15 AM
- 10:30 AM
- /I 11:30 AM
- AM 12:00 PM
- PM 1:00 PM
 - 2:00 PM
 - 2:30 PM
 - 3:00 PM
 - 3:30 PM

Avista and Carbon Reduction

Jody Morehouse Director – Natural Gas Supply

Planning for a Deeply Decarbonized Future

Active Energy Policy Environment

- Washington
 - Carbon reduction goal <u>House Bill 2311</u>
 - RNG/EE House Bill 1257
- Oregon:
 - RNG Senate Bill-98
 - Cap and Reduce Executive Order 20-04

Focus on solutions that balance carbon reduction, affordability, and reliability

Avista's Environmental Objectives

- Build further recognition of Avista's continued commitment to environmental stewardship
- Acquire renewable supplies based on the demand of our customer base and/or policy direction
- Fully account for all costs of natural gas including carbon attributed to upstream emissions
- Continue to engage with state and local governments on all existing and future climate policy
- Increase understanding of how natural gas currently works as part of the energy ecosystem, ensuring that customers have choices for their energy needs that include access to reliable energy at affordable prices
- Demonstrate Avista's leadership in responsibly managing a transition to a cleaner energy mix while being sensitive to customers' and other stakeholders' interests

Natural Gas is an Important Part of a Clean Energy Future

- In the right applications, direct use of natural gas is best use
- Natural gas generation provides **critical capacity** as renewables expand until utility-scale storage is cost effective and reliable
- Full electrification can lead to **unintended consequences**:
 - Creates new generation needs that may increase carbon footprint
 - Drives new investment in electric distribution, generation, and transmission infrastructure, causing bill pressure
 - \circ $\,$ Home and business conversion costs borne by customers $\,$
- Customers have paid for a vast pipeline infrastructure that can utilized for a cleaner future by **transitioning the fuel** and keeping the pipe
- A comprehensive view of the energy ecosystem leads to a diversified approach to energy supply that includes natural gas

Benefits of Natural Gas

- For Customers. Natural gas is affordable, resilient, and reliable.
- For Society. Natural gas is an abundant energy resource produced in North America, which helps lessen our dependency on foreign oil.
- For Innovation. Natural gas can play a supporting role in expanding the use of renewable energy sources.
- For Environment. Natural gas is the cleanest burning fossil fuel, so it helps reduce smog and greenhouse gas emissions.
- For Economy. Natural gas provides nearly a fourth of North America's energy today.

Current Supply Side Resources

Justin Dorr Resource Manager, Natural Gas Supply

Interstate Pipeline Resources

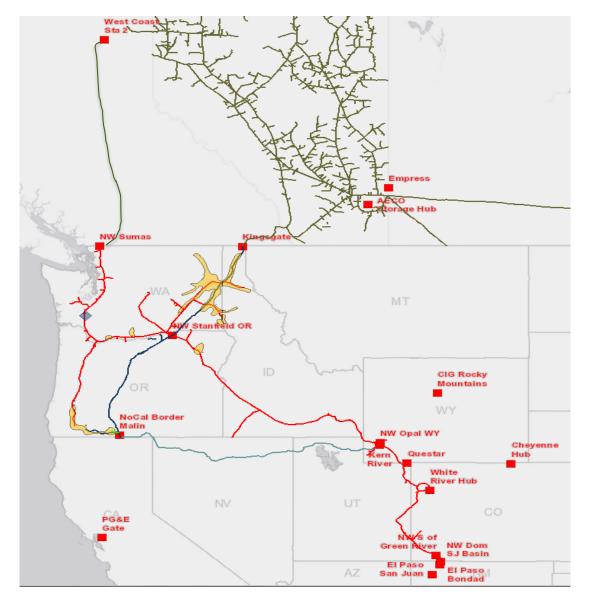
- The Integrated Resource Plan (IRP) brings together the various components necessary to ensure proper resource planning for reliable service to utility customers.
- One of the key components for natural gas service is interstate pipeline transportation. Low prices, firm supply and storage resources are meaningless to a utility customer without the ability to transport the gas reliably during cold weather events.
- Acquiring firm interstate pipeline transportation provides the most reliable delivery of supply.

Pipeline Contracting

Simply stated: The right to move (transport) a specified amount of gas from Point A to Point B

Contract Types

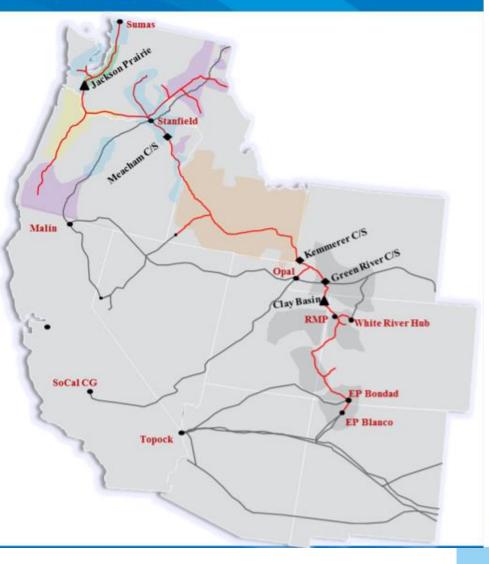
- Firm transport
 - Point A to Point B
- Alternate firm
 - Point C to Point D
- Seasonal firm
 - Point A to Point B but only in winter
- Interruptible
 - Maybe it flows, maybe it doesn't


Avista's Transportation Contract Portfolio

Avista holds firm transportation capacity on 6 interstate pipelines:

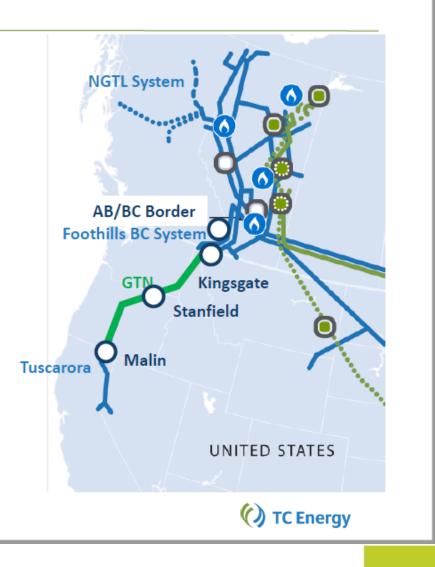
Pipeline	Expirations	Base Capacity Dth
Williams NWP	2025 – 2042 (2035)	290,000
Westcoast (Enbridge)	2026	10,000
TransCanada - NGTL	2024-2046	208,000
TransCanada - Foothills	2024-2046	204,000
TransCanada - GTN	2023-2028	210,000 164,000
TransCanada- Tuscarora	2023	200

Pipeline Overview



14

Northwest System – Strategically Located


- > Low-cost, primary service provider in the Pacific Northwest
 - 3,900-mile system with 3.8 Bcf/d peak design capacity
 - ~120 Bcf of access to storage along pipeline, with high injection and deliverability capability in market area
- > Bi-directional design
 - Provides flexibility (Rockies to market and Sumas to market)
 - Cheapest supply drives flow patterns
 - Provides operational efficiencies through displacement
- > Supply and market flexibility
 - 65 receipt points totaling 11.6 Bcf/d of supply from Rockies, Sumas, WCSB, San Juan, emerging shales
 - 366 delivery points totaling 9.7 Bcf/d of delivery capacity

GTN Overview

- Transports WCSB and Rockies natural gas to Washington, Oregon and California
- Approximately 1,377 miles of pipeline
- Kingsgate best efforts receipt capability of approx. 2.87 Bcfd and throughput capacity of approx. 2 Bcfd through Station 14
- Deliveries of up to 1.5 Bcfd to non-California Markets
- Concurrent transport expansions from NIT to Malin:
 - Tranche 1
 - 110 TJ/d (NGTL and FHBC), 100 MDth/d (GTN)
 - November 1, 2022 Targeted in-service
 - Tranche 2
 - 175 TJ/d (NGTL and FHBC), 150 MDth/d (GTN)
 - November 1, 2023 Targeted in-service

NGTL to Malin West Path expansion

Connecting WCSB supply to key North American markets

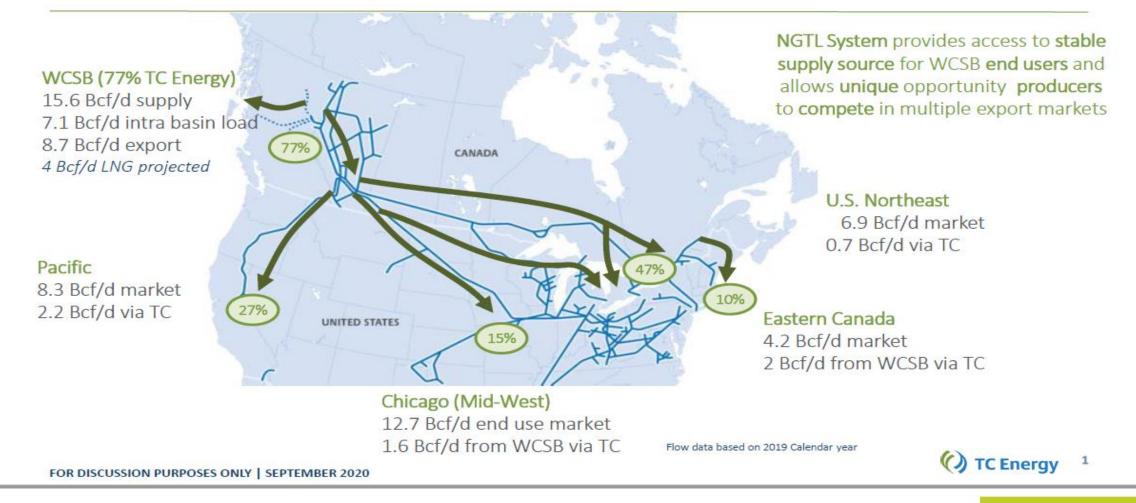
Valued transport path for both Supply and End Use Shippers

Concurrent transport expansions from NIT to Malin:

Tranche 1

- 110 TJ/d (NGTL and FHBC), 100 MDth/d (GTN)
- November 1, 2022 Targeted in-service

Tranche 2


- 175 TJ/d (NGTL and FHBC), 150 MDth/d (GTN)
- November 1, 2023 Targeted in-service
- Average term of awarded capacity:
- 31.3 years NGTL
- 31.4 years Foothills BC

FOR DISCUSSION PURPOSES ONLY | SEPTEMBER 2020

WCSB gas is competitive in key markets, Safety, Toll Competitiveness & Reliability is Our Focus

Storage – A valuable asset

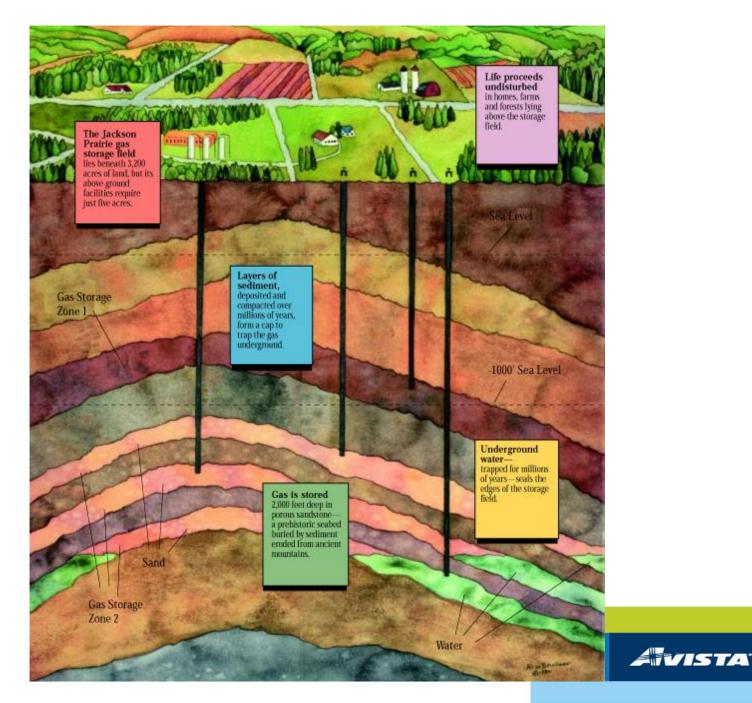
- Peaking resource
- Improves reliability
- Enables capture of price spreads between time periods
- Enables efficient counter cyclical utilization of transportation (i.e. summer injections)
- May require transportation to service territory
- In-service territory storage offers most flexibility

Avista's Storage Resources

Washington and Idaho Owned Jackson Prairie

• 7.7 Bcf of Capacity with approximately 346,000 Dth/d of deliverability

Oregon


Owned Jackson Prairie

- 823,000 Dth of Capacity with approximately 52,000 Dth/d of deliverability Leased Jackson Prairie
- 95,565 Dth of Capacity with approximately 2,654 Dth/d of deliverability

The Facility

- Jackson Prairie is a series of deep, underground reservoirs – basically thick, porous sandstone deposits.
- The sand layers lie approximately 1,000 to 3,000 feet below the ground surface.
- Large compressors and pipelines are employed to both inject and withdraw natural gas at 54 wells spread across the 3,200 acre facility.

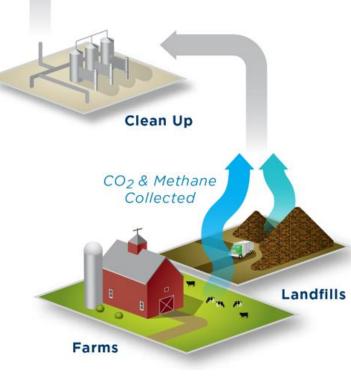
Renewable Natural Gas (RNG)

Michael Whitby, RNG Manager

Advancing RNG at Avista

Avista has been actively preparing to participate in RNG. The following topics covered in this section of the presentation are as follows:

- Renewable Natural Gas (RNG) Explained
- RNG A Climate Change Solution
- Policy & Regulation
- Industry Reports
- Avista's Commitment to Carbon Reduction
- Avista's RNG Program & Team
- Program Considerations
- RNG Market Studies & Voluntary Customer Program
- Pipeline Safety & Interconnection Requirements
- Environmental Attribute Tracking & Banking
- RNG Production Technologies & Project Types
- RNG Opportunities and Challenges
- Cost Effectiveness Evaluation Methodology


Renewable Natural Gas (RNG) Explained

Natural Gas is Critical to a Clean Energy Future

Renewable Natural Gas Explained

Renewable Natural Gas (RNG) is a non-fossil gas resource derived from various renewable waste stream sources including but not limited to landfills, wastewater treatment plants, food waste, and agriculture waste such as dairy farms, and other livestock farms. These feedstocks utilize anaerobic digestion to generate biogas, which in turn can be processed to meet pipeline quality RNG. Forest wood waste can also be converted to biogas via thermal gasification methods and made pipeline ready.

Viable feedstocks that are expected to continually operate and or expand will provide an opportunity for RNG to be produced in perpetuity, and shall serve to displace geologic gas volumes, and capture otherwise fugitive methane. As such, RNG can play an important role in decarbonizing our gas system through RNG customer programs and projects to reduce greenhouse gas (GHG) emissions, and the carbon footprint associated with geologic gas.

RNG is fully interchangeable with conventional natural gas and utilizes the existing natural gas distribution system network to seamlessly serve residential, commercial and industrial end users **without any** additional building improvements, equipment, or special equipment requirements.

RNG – A Climate Change Solution

Natural gas plays critical role for meeting aggressive green house gas (GHG) reductions goals, RNG even more so!

- Advantages of RNG
 - "De-carbonizes" gas stream
 - Gives customers another renewable choice
 - RNG is a strong pathway option for decarbonizing the thermal market
 - RNG utilizes existing infrastructure as it is fully interchangeable with conventional natural gas with no end user equipment modifications or replacement
 - RNG is a more economical solution than electrification which requires the procurement of added renewable electric resources, distribution system upgrades, and has a significant impact to end users due to the necessary replacement of building equipment and systems
 - In the right applications, **direct use of natural gas is best use**
 - Natural gas generation provides critical capacity as renewables expand until utility-scale storage is cost effective and reliable

Policy & Regulation:

Washington HB 2580

 RNG study requested by legislature from WA Department of Commerce & WSU Energy Program

Washington HB 1257

- Building efficiency bill that includes RNG
- Requires utilities to offer voluntary RNG programs/products to customers
- Allows utilities to invest in RNG projects and recover the costs

Oregon SB 334

 Directs the Oregon Department of Energy to conduct a biogas and renewable natural gas inventory and prepare a report

Oregon SB 98 & AR 632 Rule Making

- Final rules effective on July 17th 2020
- Allows investment recovery, percent of revenue requirement per year to be determined based on potential project costs & timing, pending petition to participate
- Allows investment in gas conditioning equipment without RFP process

Industry Reports:

Avista is familiar with these relevant industry reports and has utilized them to understand the RNG industry in general as well as the potential in Washington & Oregon

Avista's Commitment to Carbon Reduction

RNG is a Pathway to Decarbonizing the Natural Gas System

- By utilizing waste streams to create green fuel, RNG can play an important role in supporting Avista's environmental strategy
- RNG provides Avista's customers with a new environmentally friendly, low carbon fuel choice, delivered seamlessly via Avista's existing natural gas system

Avista's RNG Program & Team

Avista has been assessing and planning for RNG

- Program Manager in place
- Program Charter in place
- Program Execution Plan drafted
- Participation in the regulatory and rule making process in OR & WA, informal and formal
- Business Development efforts in pursuit of multiple RNG projects continues
- Business Cases developed for consideration in Avista's five year capital planning cycle
- RNG Project accounting established
- Cross-functional team in place to support RNG:
 - Gas Engineering
 - Gas Supply
 - Legal
 - Governmental Affairs
 - Regulatory Affairs
 - Products & Services

Program Considerations

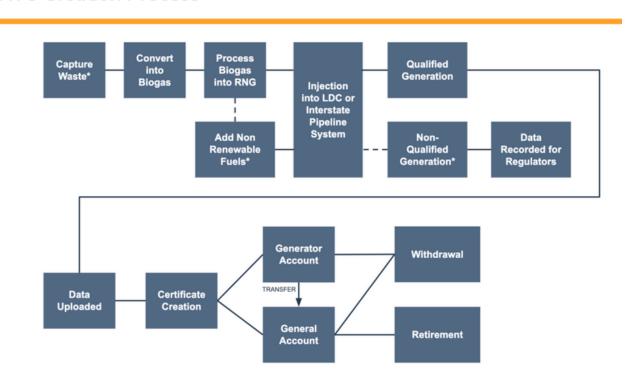
- Evaluate available RNG procurement options
- Pursue potential RNG development opportunities from local RNG feedstock resources under new legislation (Washington HB 1257 & Oregon SB 98)
- Develop an understanding of RNG development cost, cost recovery impacts to customers, resulting supply volumes and RNG costs
- Evaluate potential RNG customer market demands vs. supply
- Participation in rule making and policy:
 - Participation in HB 1257 Policy development
 - Participation in SB 98 Policy Rulemaking via AR 632 informal and formal
 - Cost recovery proposal led by NWGA with input from all four Washington LDC's
 - Collaborative RNG Gas Quality Framework established across four WA LDC's

RNG Market Studies & Voluntary Customer Program

- RNG Commercial Market Study completed in 2019
- RNG Residential Market Survey concluded in September 2020
 - Customers lack understanding of RNG since it is a new concept
 - Customers like the environmental aspects of RNG
 - Customers like to choose their level of participation to manage costs predictably
- Voluntary customer RNG program design will advance based on the studies above
- Estimate voluntary customer program demands
- RNG to be added to Avista's renewables portfolio

Pipeline Safety & Interconnection Requirements

- Avista Gas Quality Specification developed
- Collaborative RNG Gas Quality Framework established across (4) WALDC's
- Avista Interconnection Agreement template developed
- Avista Study Agreement and RNG Producer review process template developed



Environmental Attribute Tracking & Banking

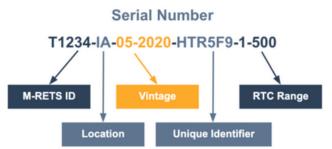
Under OR SB 98 the M-RETS system has been selected to track RNG environmental attributes. Other jurisdictions including Washington may also select this system

- 1 Renewable Thermal Certificate (RTC) = 1 Dekatherm (Dth) of RNG
- Transparent electronic certificate tracking
- Not a certification entity

RTC Creation Process

What Does an RTC Look Like?

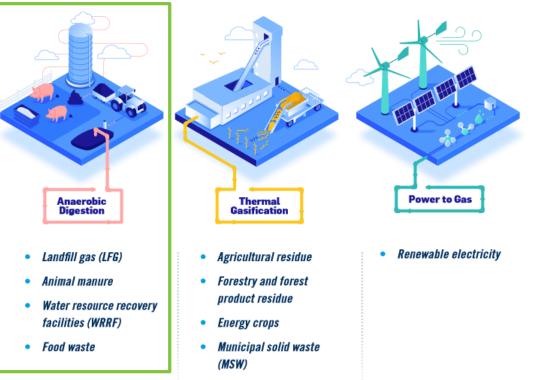
RTC Information


Dekatherm (Dth) Renewable Thermal = 1 Renewable Thermal Certificate

Certificate Details include:

- Serial Number (See Example)
- Account
- Project
- Thermal Resource
- Feedstock
- Vintage
- Location
- Quantity

Carbon Pathways (If Applicable) IRE Verification (If Applicable)



M-RETS

RNG Production Technologies & Project Types

Avista is actively evaluating a handful of potential Anaerobic Digestion Projects throughout Washington and Oregon.

RNG Production Technologies

RNG Technologies :

- Conventional RNG: Amine scrub, membrane separation, water wash, PSA
- Hydrogen blending

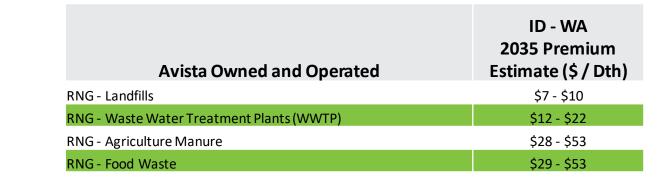
RNG Opportunities & Challenges

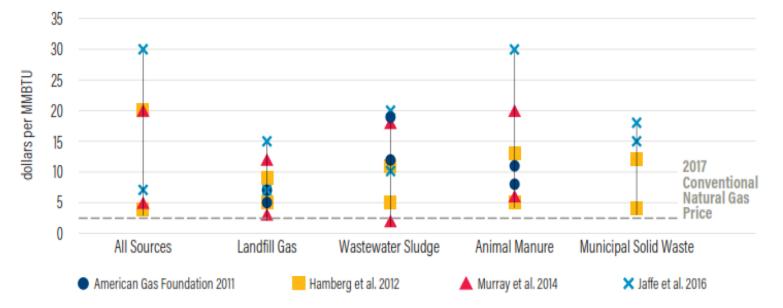
California RNG market (\$30+/Dth v. \$2/Dth)

- Vehicle emission incentives shut-out other potential end users
- Producers see the pot of gold in Federal RIN & California LCFS markets
- RNG supplier cost volatility

Financing for producers

- RIN market is volatile
- No forward pricing for RNG RTC's in carbon market
- Vehicle market may be approaching saturation in CA
- Environmental attribute value for local markets is undefined


RNG Opportunities & Challenges


Utility RNG Projects

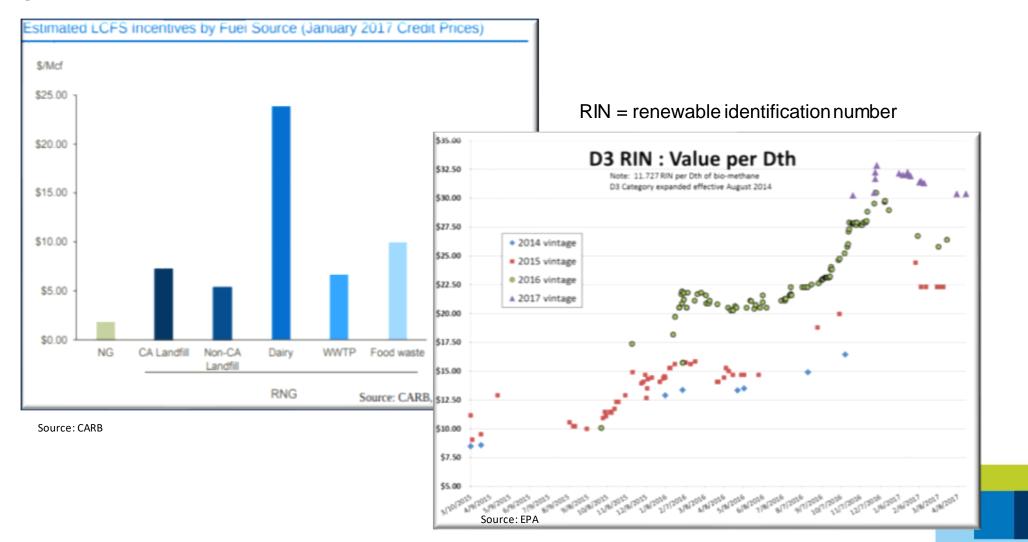
- Feedstock owners can now partner with LDC's to cultivate new RNG projects
- Feedstock owners willness to partner with the utility's cost of service model. This is a foreign concept to feedstock owners that seek highest value for their biogas
- LDC's are credit worthy partners offering long term off-take contracts to feedstock owners
- Each RNG project is unique with respect to capital development costs & resulting RNG costs
- Each RNG project will vary in size, location and distance to interconnection pipeline, feedstock type, gas conditioning equipment and requirements and operating costs
- Economies of scale Low volume biogas opportunities face economic challenges
- New RNG Projects can take 2-3 years to develop
- Customers have paid for a vast pipeline infrastructure that can be utilized for a cleaner future by transitioning the fuel and keeping the pipe

RNG \$ per Dth/MMBtu

Source: Promoting RNG in WA State

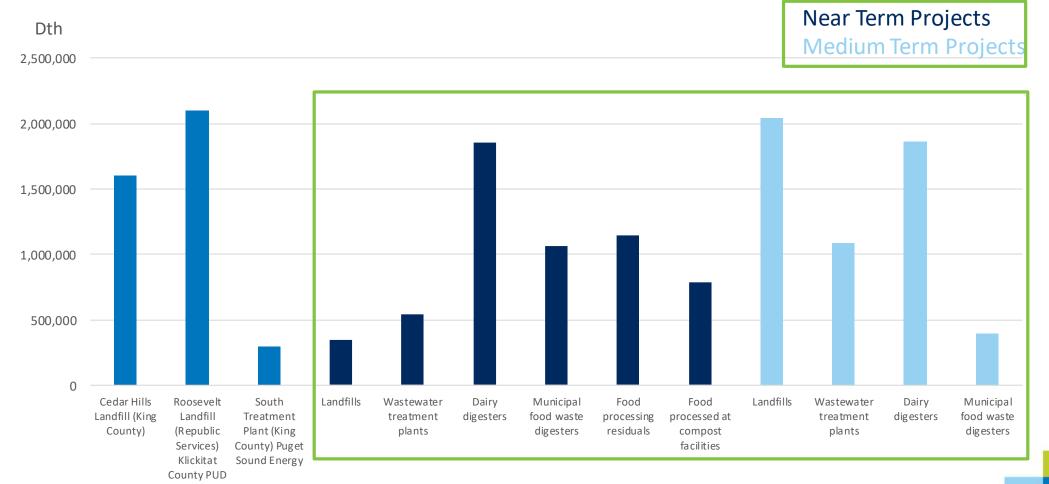
Carbon Intensity will pay a role in how the environmental attributes / Renewable Thermal Certificate (RTC) values will be determined

Fuel Pathway	Carbon Intensity $\frac{gCO_2e}{MJ}$
Diesel*	102.01
Gasoline*	99.78
Fossil CNG [†]	78.37
Landfill CNG^{\dagger}	46.42
WWTP CNG*	19.34
MSW CNG*	-22.93
Dairy CNG [‡]	-276.24


*California Code of Regulation Title 17, §95488, Table 6. Carbon intensity for WWTP is the average of two WWTP pathways.

[†]California Code of Regulation Title 17, §95488, Table 7.

[†]Method 2B Application CalBio LLC, Dallas Texas, Dairy Digester Biogas to CNG.


RNG RTC values within the utility construct cannot compete with the RNG values driven by the RFS RIN & LCFS markets

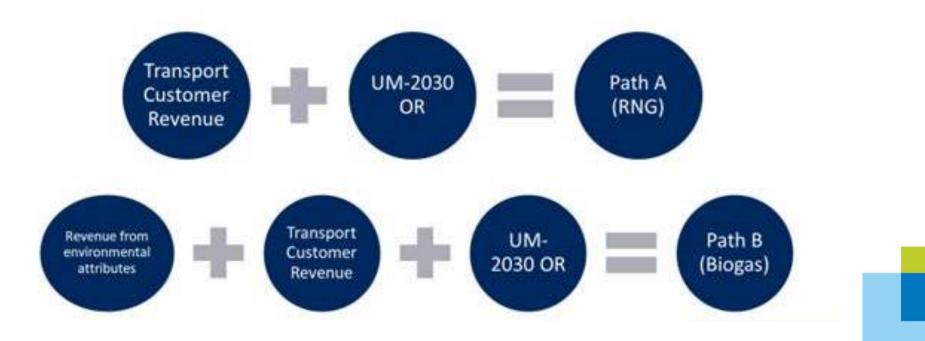
AVISTA

39

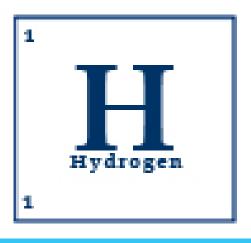
WA RNG Report (HB 2580) – Utility's have the opportunity to leverage the remaining RNG opportunities to decarbonize the natural gas system

WSU Energy Program, Harnessing Renewable Natural Gas for Low-Carbon Fuel: A Roadmap for Washington State

ANIST


Existing Projects

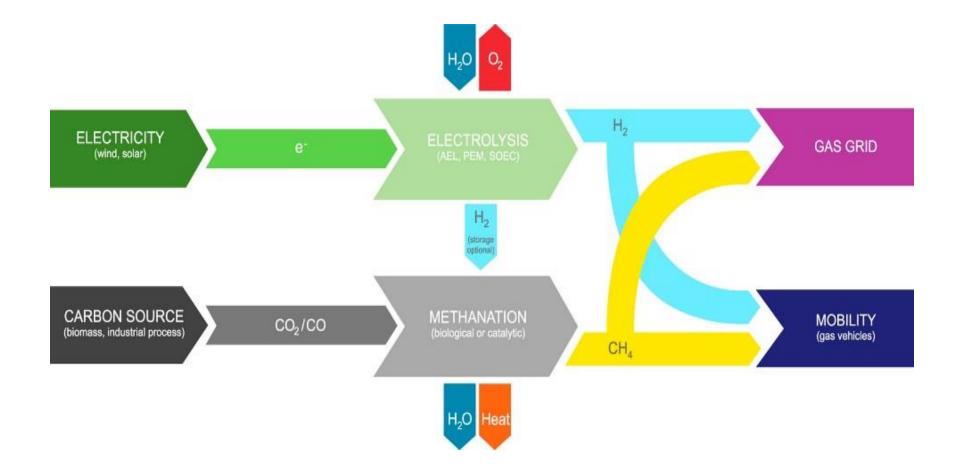
*Released December 1, 2018


Cost Effectiveness Evaluation Methodology

Developing the Methodology....a work in process

- Avista is creating a cost effectiveness evaluation methodology for evaluating RNG projects. The following slides are a snapshot of Avista's work in progress.
- The methodology shown is derived from OPUC UM2030, also referenced in the OPUC SB 98 AR 632 Rulemaking
- The evaluation method shown herein is subject to input, refinement and reconsideration.

Hydrogen


Tom Pardee Planning Manager, Natural Gas Supply

Hydrogen

- The energy factor of H2 Low Heating Value (LHV) is roughly equivalent to a gallon of gasoline or 114,000btu
 - This equates to 8.78 kg of H2LHV per Dth
- Most H2 is currently made from reforming natural gas
 - The energy can come from Nuclear (Pink), Renewables (Green) or Fossil fuels (Grey)
- High cost (currently) when compared to energy in a Dth combined with current prices of natural gas
- Hydrogen can only be stored in the pipeline as a % of gas or combined with a carbon source to produce methane.
- Hydrogen is lighter than air and diffuses rapidly (3.8x faster than natural gas) making it more difficult to contain

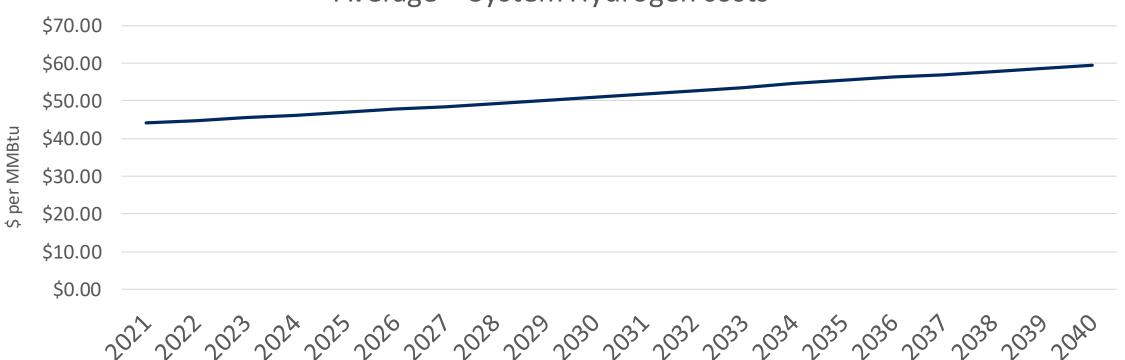
PtG Process

AIVISTA'

Power to Gas

- Power to Gas (PtG) is a process using power to separate water into hydrogen and oxygen
- Hydrogen can be stored, as a % of gas, in the existing gas grid or used in the mobility sector (blend up to 20%)
- PtG can help to balance excess power from intermittent sources like wind and solar
- PtG can decarbonize the direct use of natural gas
- PtG economics will advance as more renewables are added and the technology matures
- Short term and seasonal energy storage
- Stored in the existing gas pipeline

45


PtG Benefits

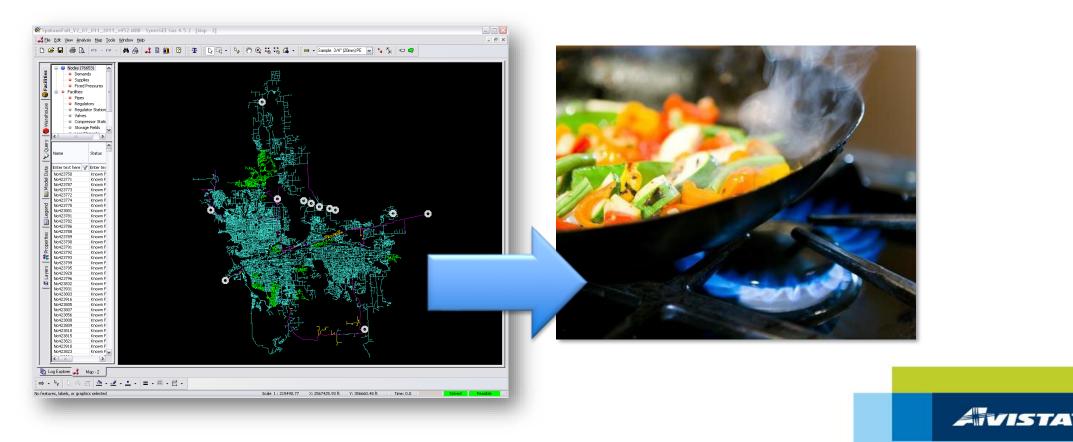
Benefits

- Cleans up the grid using excess power
- Stores the energy for future use in the natural gas pipelines/infrastructure utilizing customer owned resources and are currently available
- Hydrogen is relatively safe as if it is released it quickly dilutes into a nonflammable concentration

Current Renewable Hydrogen Price estimates

Average – System Hydrogen costs

*Assumes Avista owned resources

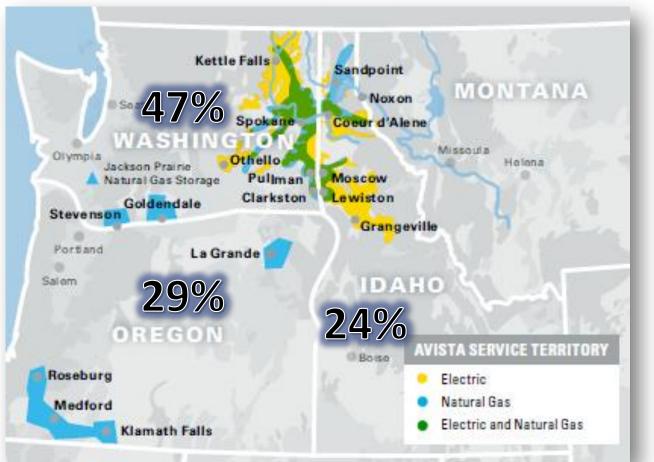


Distribution Overview

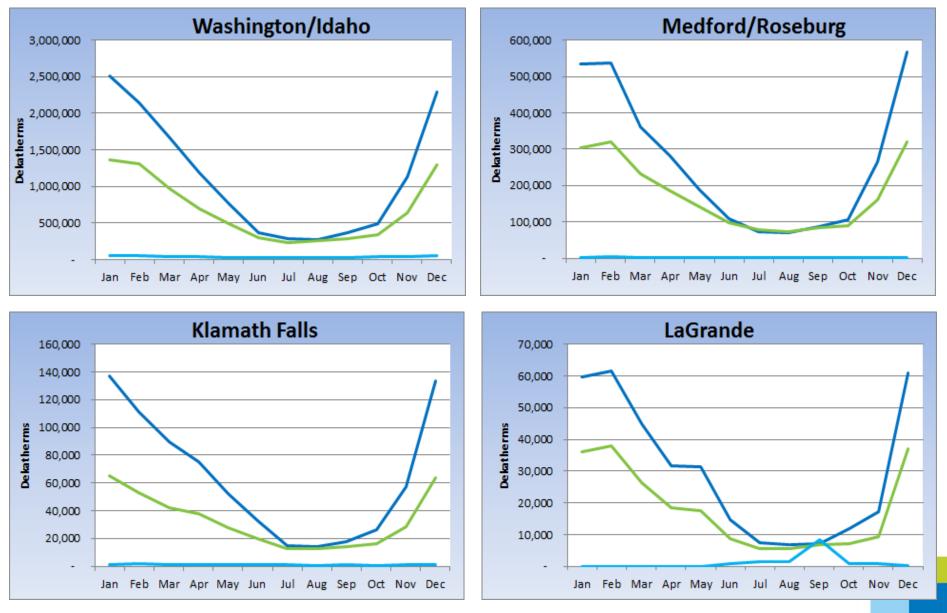
Terrence Browne Sr. Gas Planning Engineer, Gas Engineering

Mission

• Using technology to plan and design a safe, reliable, and economical distribution system


Gas Distribution Planning

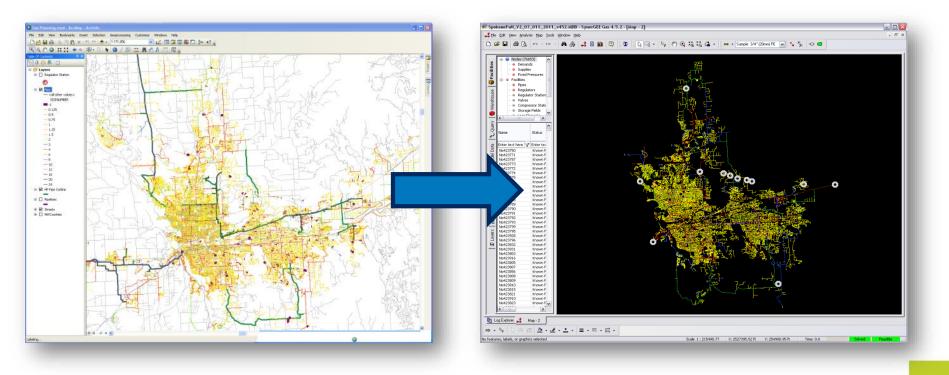
- Service Territory and Customers
- Scope of Gas Distribution Planning
- SynerGi Load Study Tool
- Planning Criteria
- Interpreting Results
- Long-term Planning Objectives
- Monitoring Our System
- Communicating Solutions
- Gate Station Capacity Review
- Project Examples


Service Territory and Customer Overview

- Serves electric and natural gas customers in eastern Washington and northern Idaho, and natural gas customers in southern and eastern Oregon
 - Population of service area 1.5 million
 - ▶ 385,000 electric customers
 - 360,000 natural gas customers

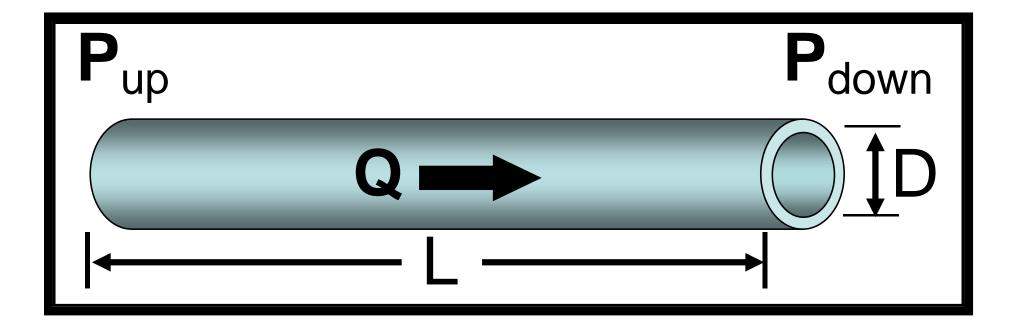
ATVISTA'

Seasonal Demand Profiles

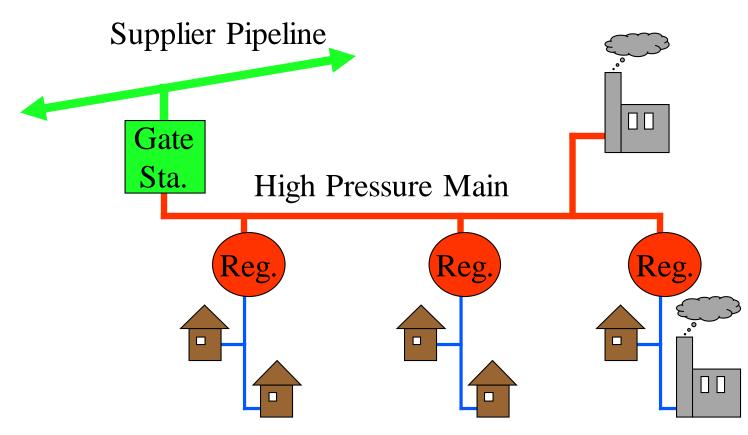


-Residential ---Commercial ---Industrial

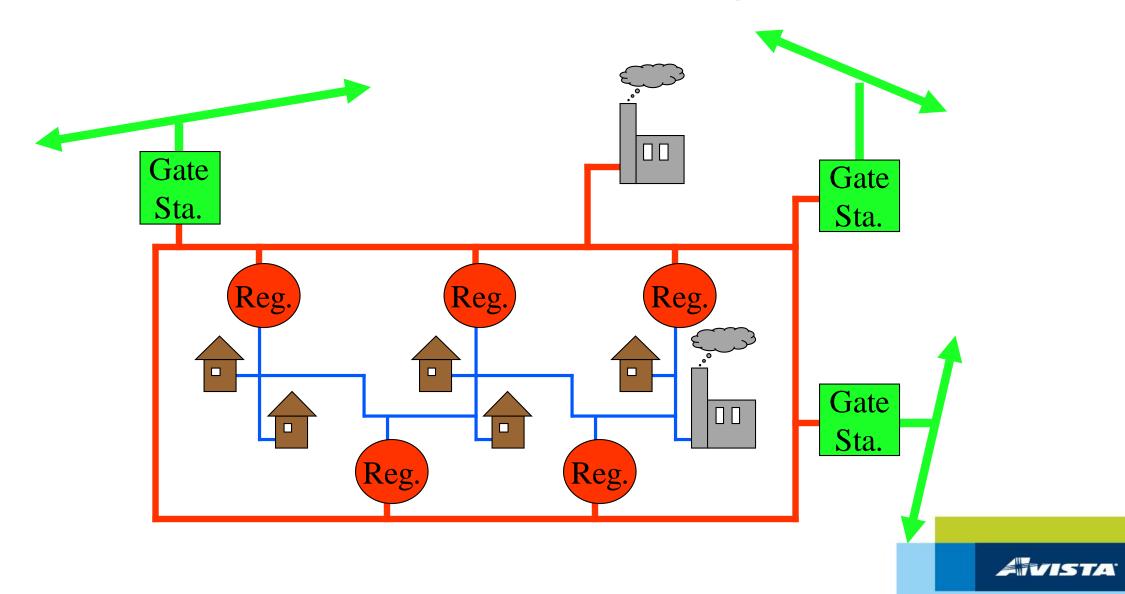
AVISTA


Our Planning Models

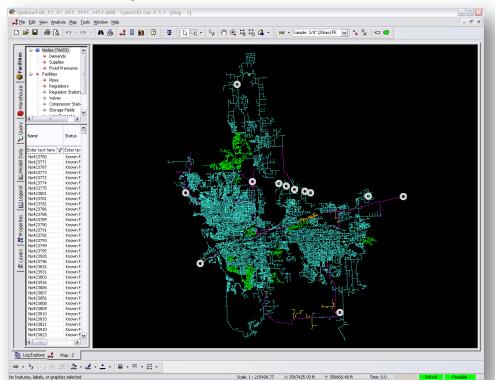
- 120 cities
- 40 load study models



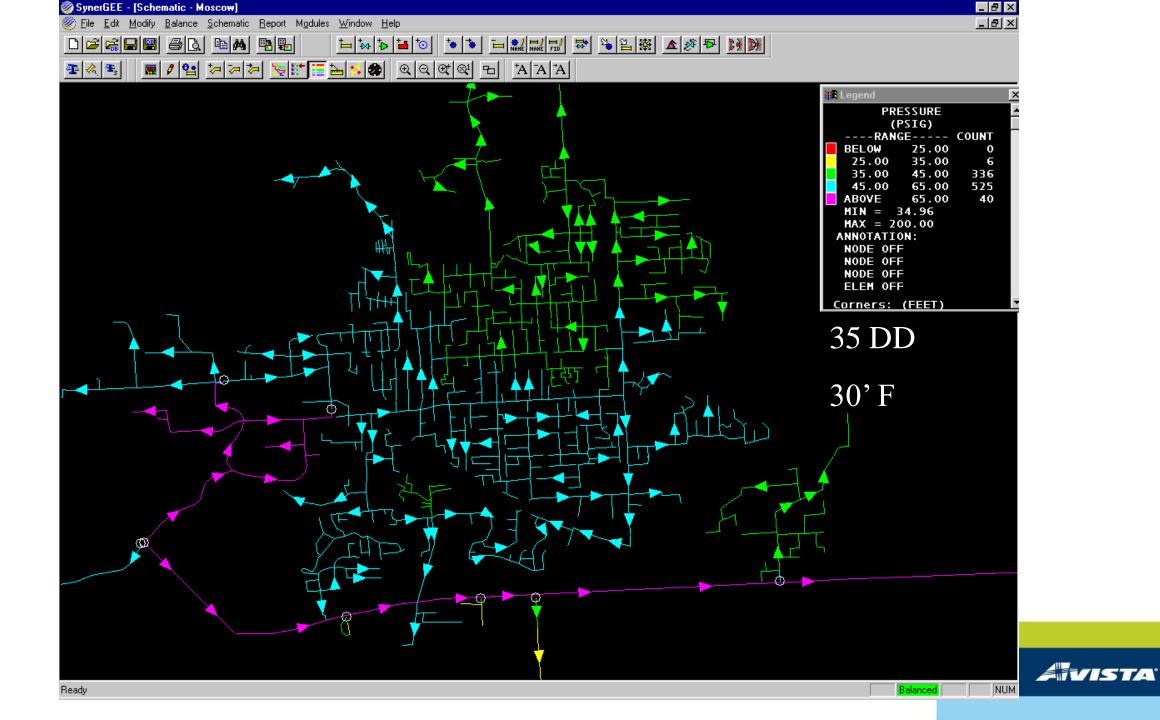
5 Variables for Any Given Pipe


Scope of Gas Distribution Planning

Distribution Main and Services



Scope of Gas Distrib. Planning cont.



SynerGi (SynerGEE, Stoner) Load Study

- Simulate distribution behavior
- Identify low pressure areas
- Coordinate reinforcements with expansions
- Measure reliability

Preparing a Load Study

- Estimating Customer Usage
- Creating a Pipeline Network
- Join Customer Loads to Pipes
- Convert to Load Study

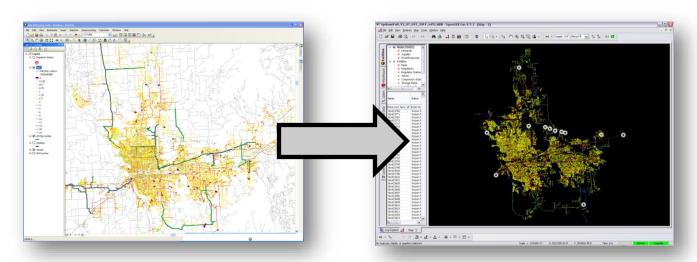
Estimating Customer Usage

- Gathering Data
 - Days of service
 - Degree Days
 - Usage
 - Name, Address, Revenue Class, Rate Schedule...

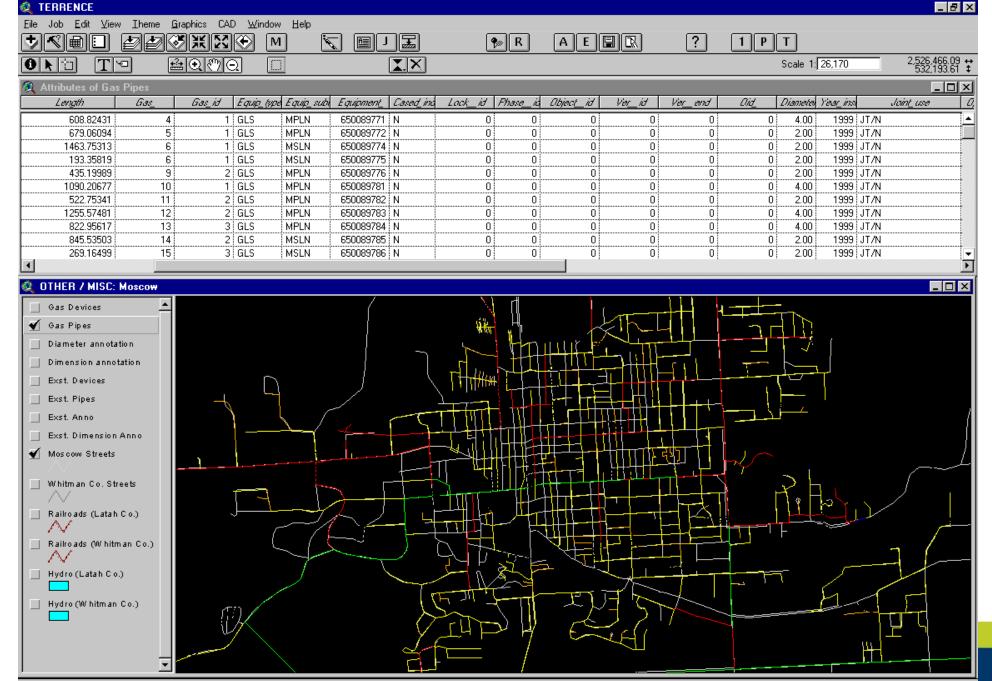
Estimating Customer Usage cont.

- Degree Days
 - Heating (HDD)
 - Cooling (CDD)
- Temperature Usage Relationship
 - Load vs. HDD's
 - Base Load (constant)
 - Heat Load (variable)
 - High correlation with residential

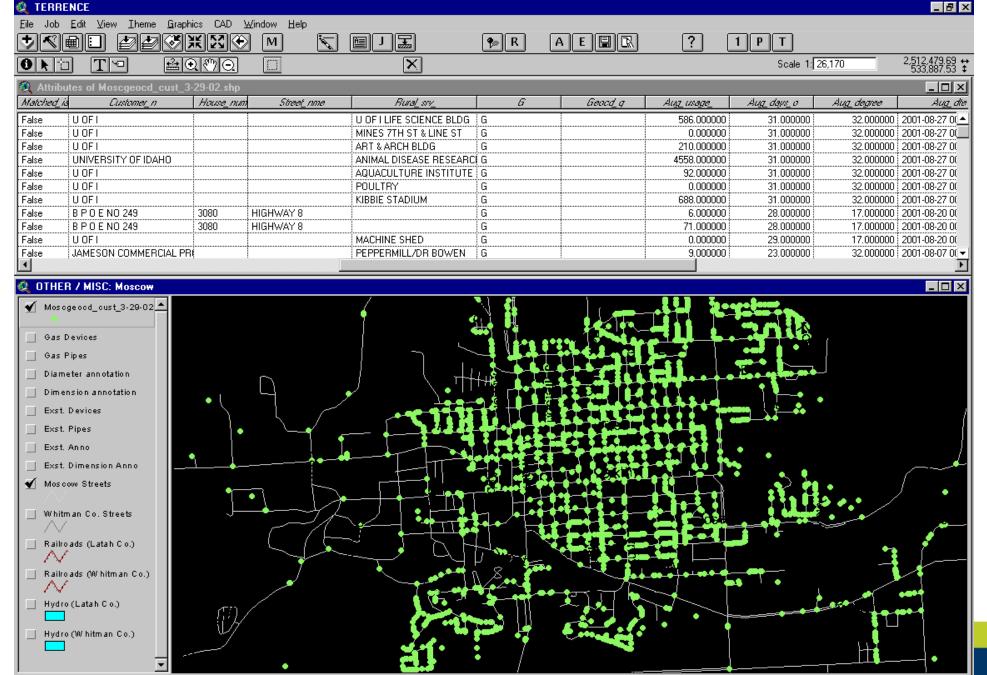
Avg. Daily	Heating	Cooling
Temperature	Degree Days	Degree Days
('Fahrenheit)	(HDD)	(CDD)
85		20
80		15
75		10
70		5
65	0	0
60	5	
55	10	
50	15	
45	20	
40	25	
35	30	
30	35	
25	40	
20	45	
15	50	
10	55	
5	60	
4	61	
0	65	
-5	70	
-10	75	
-15	80	

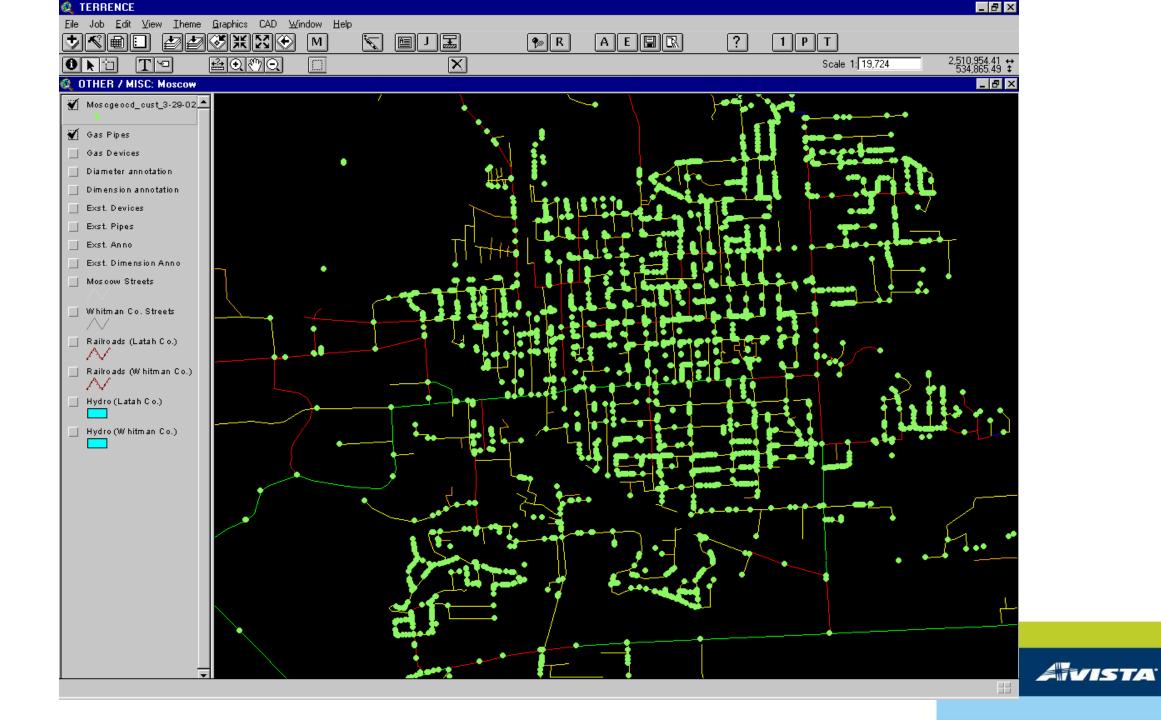

Load vs. Temperature 0.80 y = 0.0129x + 0.11750.70 0.60 Base Heat 0.50 5 8 8 0.40 0.30 0.20 0.10 0.00 -10 25 30 35 40 45 0 5 15 20 Heating Degree Days

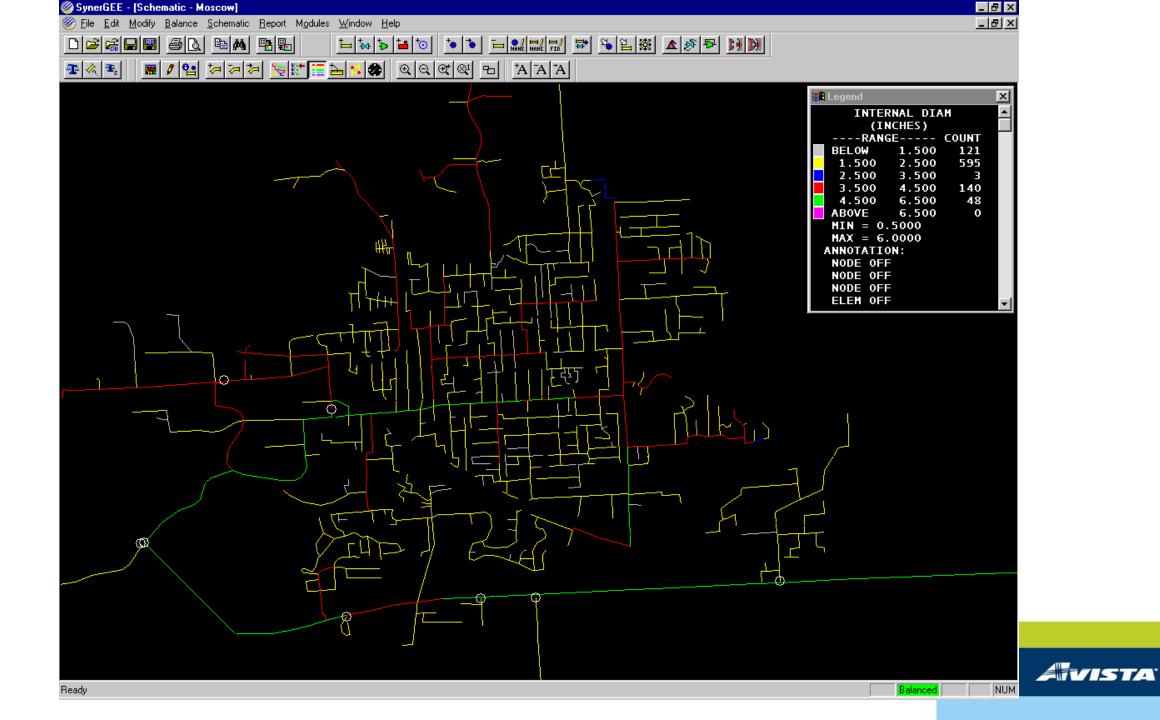
AVISTA


Summary / 109735 / 103678 / 114268 / 114279 Chart1 / 133049 / 156920 / 161549 / 208478 /

Creating a Pipeline Model

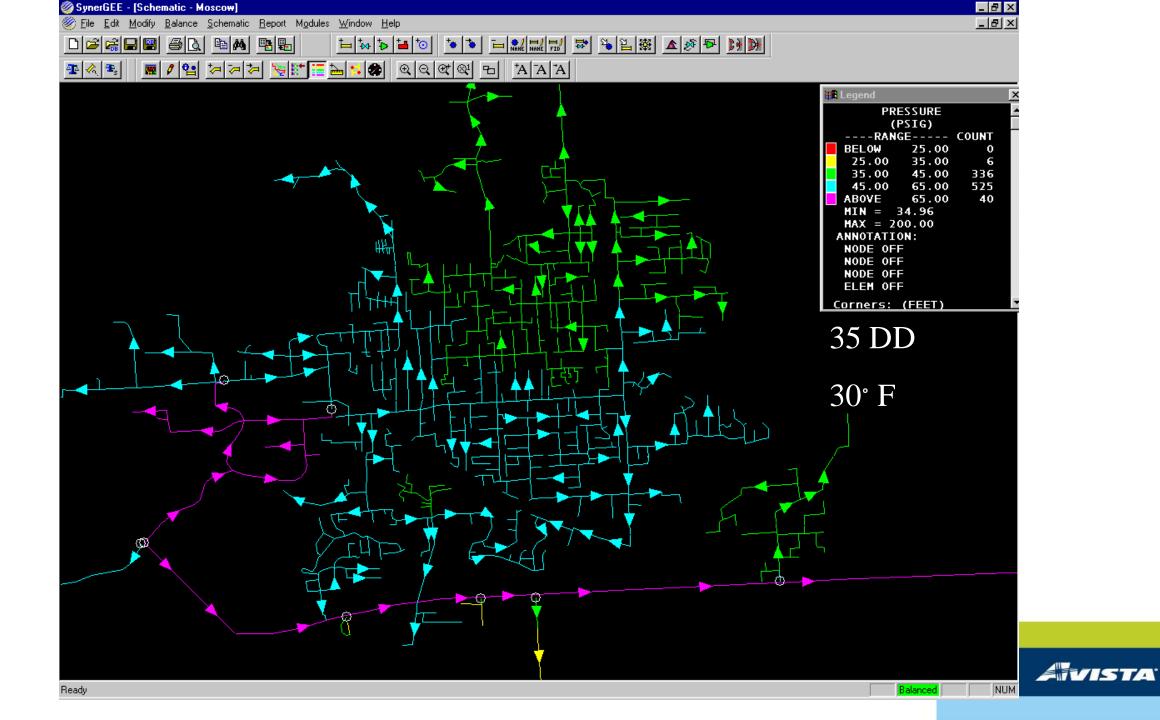

- Elements
 - Pipes, regulators, valves
 - Attributes: Length, internal diameter, roughness
- Nodes
 - Sources, usage points, pipe ends
 - Attributes: Flow, pressure





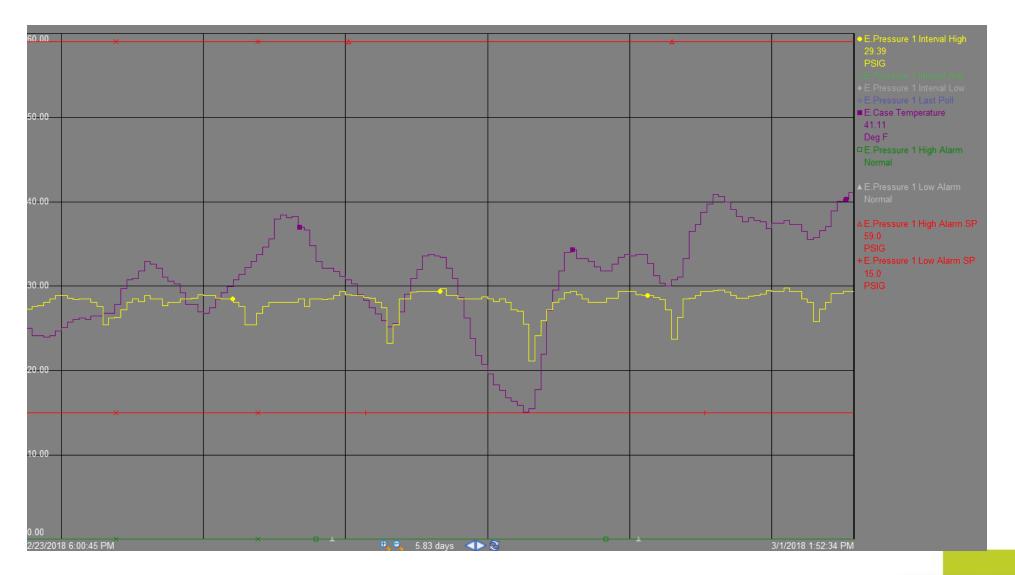
AVISTA

AVISTA



Balancing Model

- Simulate system for any temperature
 - HDD's
- Solve for pressure at all nodes

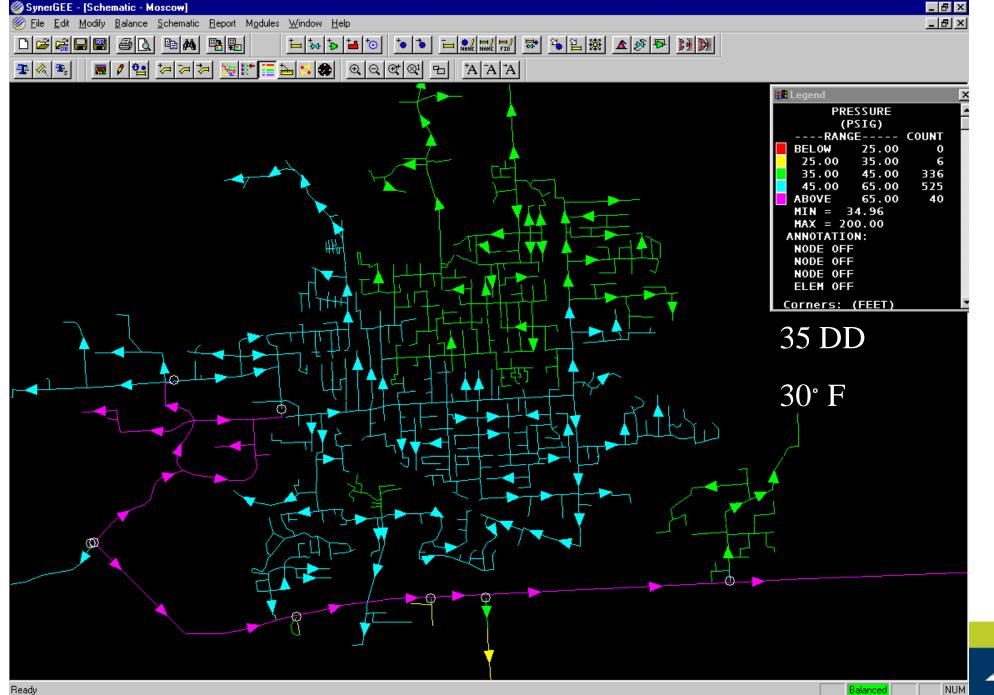


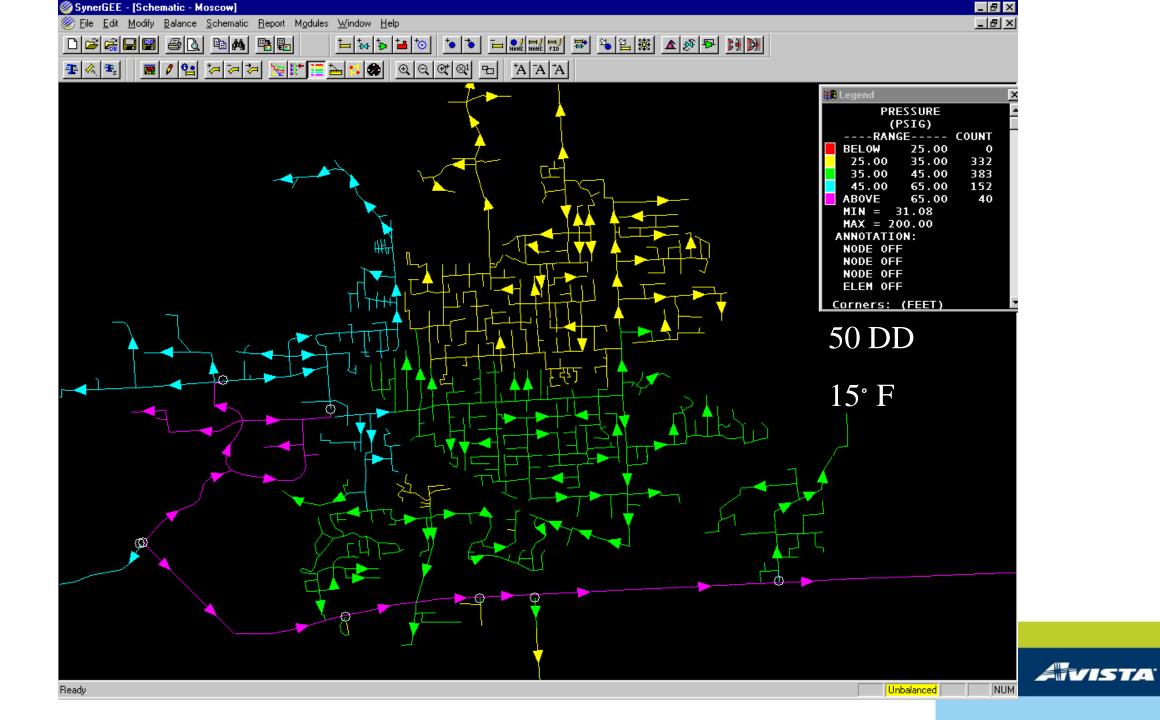
Validating Model

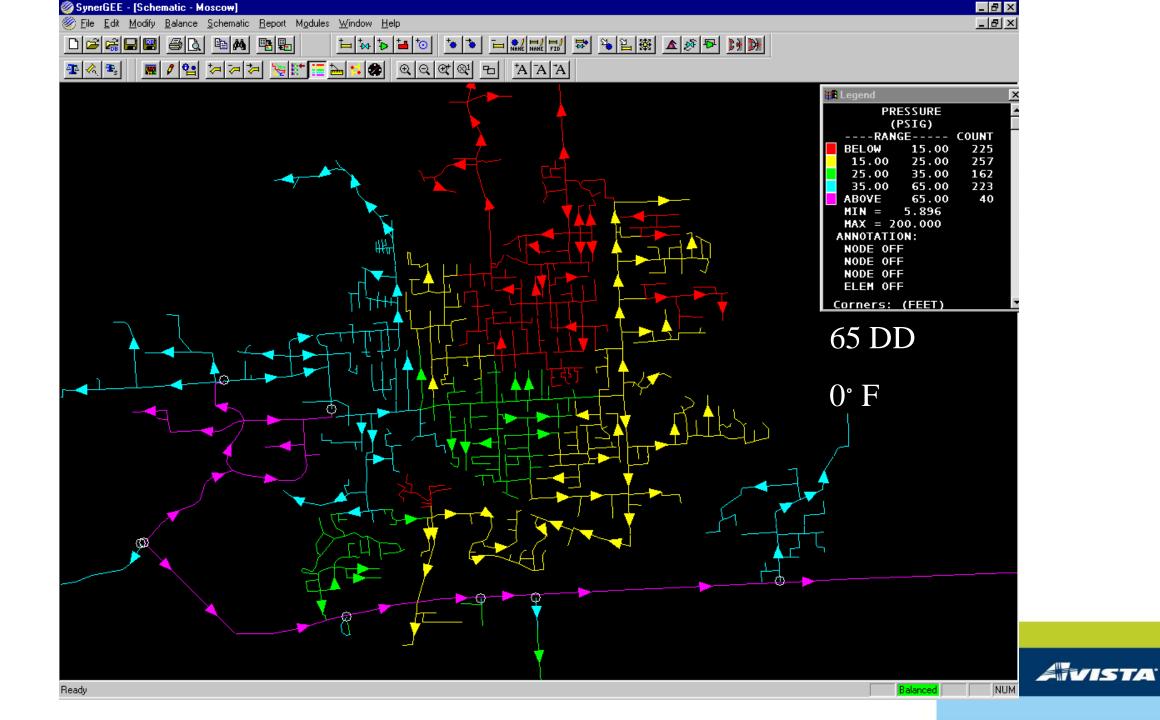
ATVISTA'

Validating Model cont.

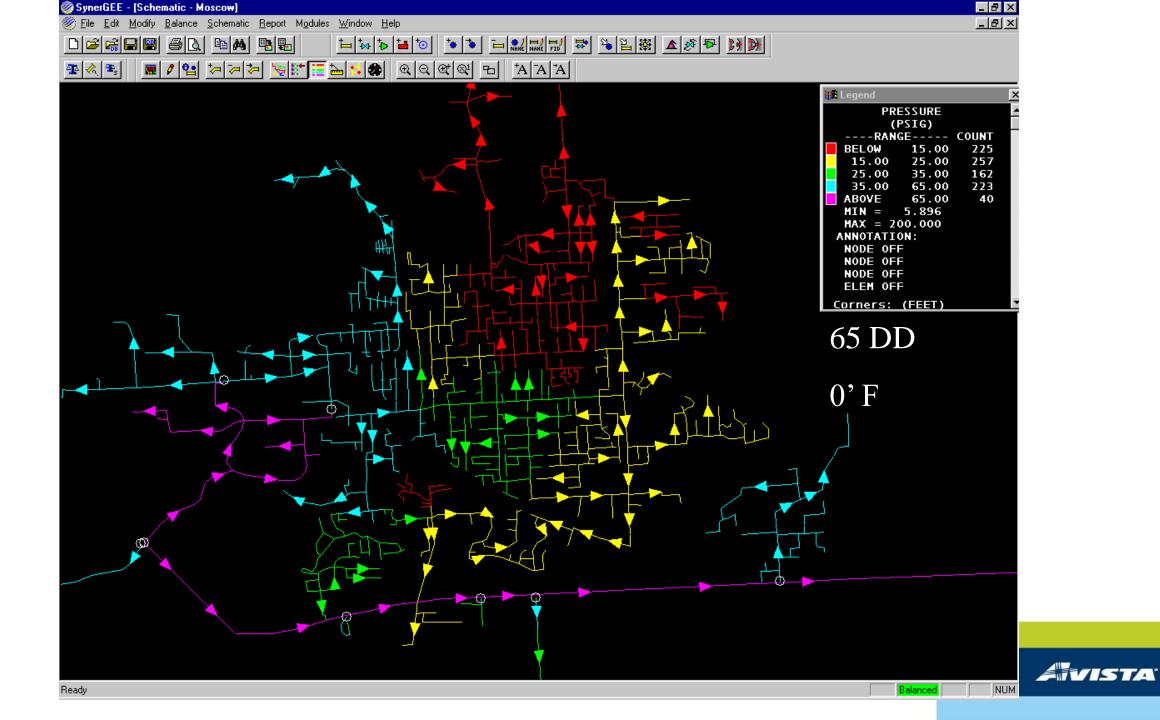
Validating Model cont.

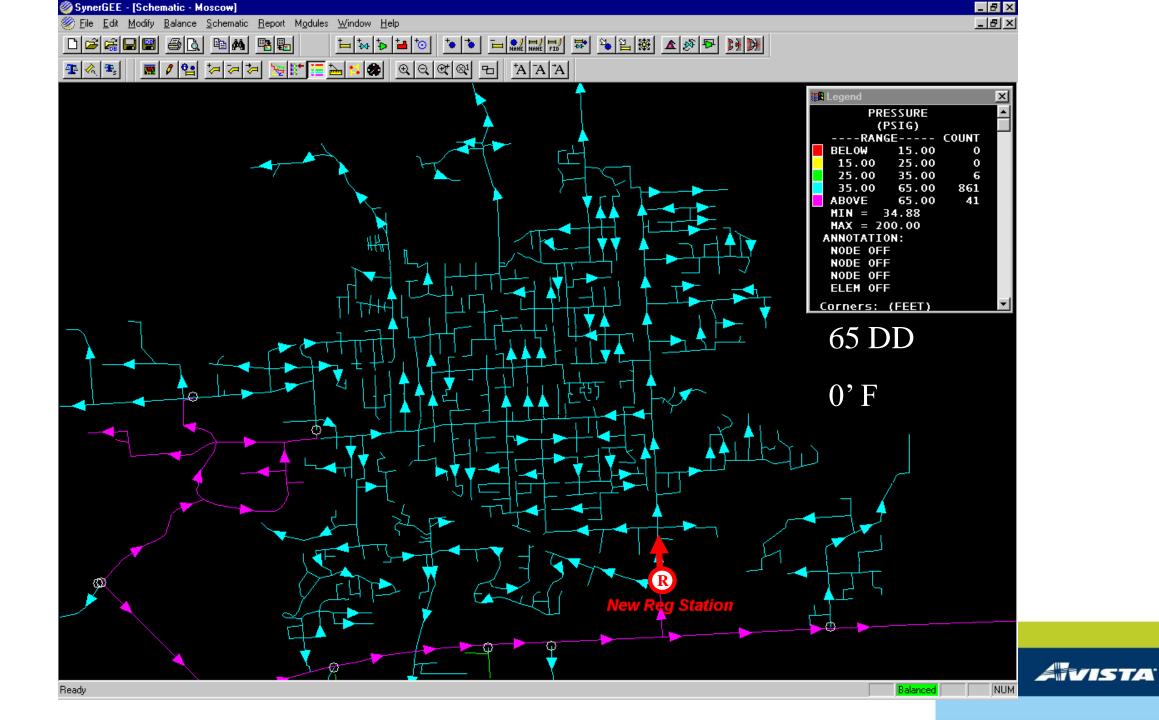

- Simulate recorded condition
- Electronic Pressure Recorders
 - Do calculated results match *field* data?
- Gate Station Telemetry
 - Do calculated results match *source* data?
- Possible Errors
 - Missing pipe
 - Source pressure changed
 - Industrial loads

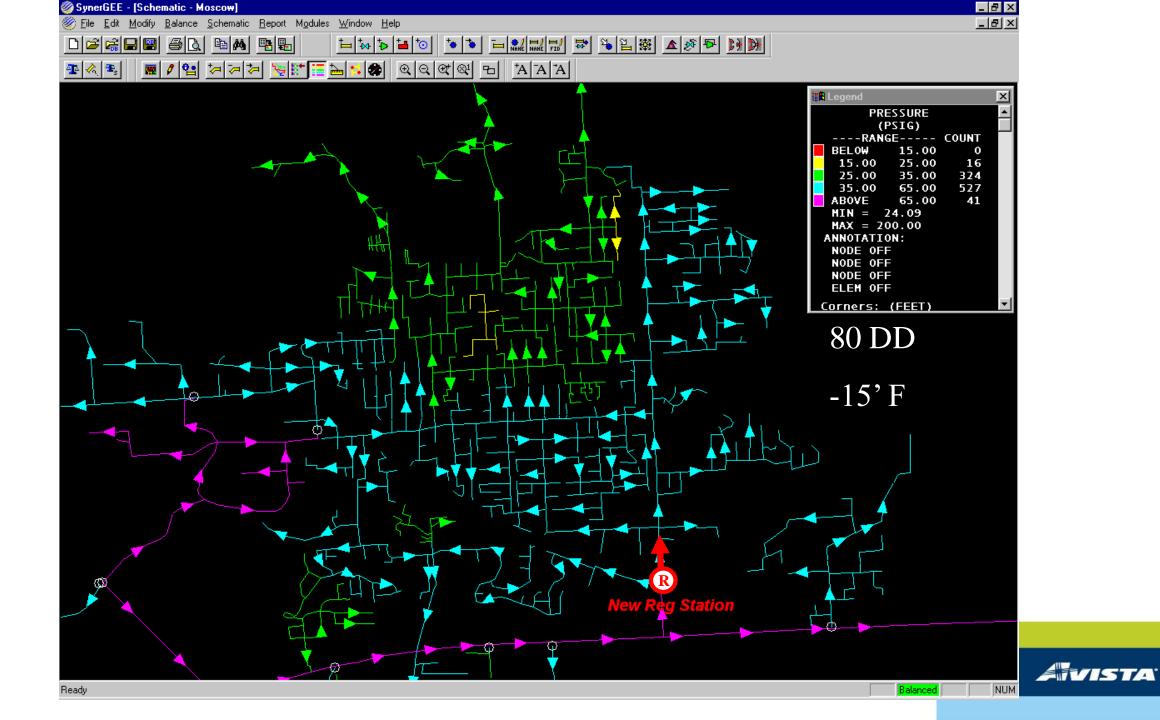

Planning Criteria


- Reliability during design HDD
 - Spokane 77 HDD (avg. daily temp. -12'F)
 - Medford 54 HDD (avg. daily temp. 11'F)
 - Klamath Falls 74 HDD (avg. daily temp. -9'F)
 - La Grande 76 HDD (avg. daily temp. -11'F)
 - Roseburg 51 HDD (avg. daily temp. 14'F)
- Maintain minimum of 15 psig in system at all times
 - 5 psig in lower MAOP areas

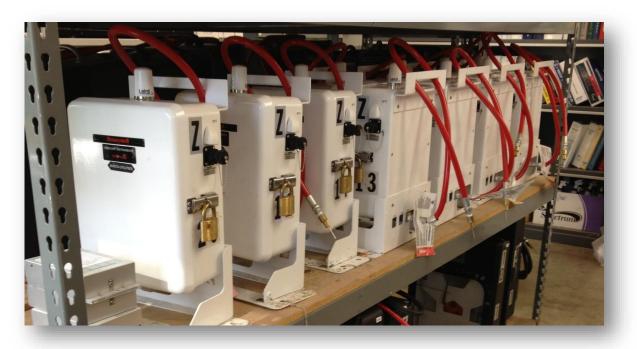
AIVISTA'




Interpreting Results

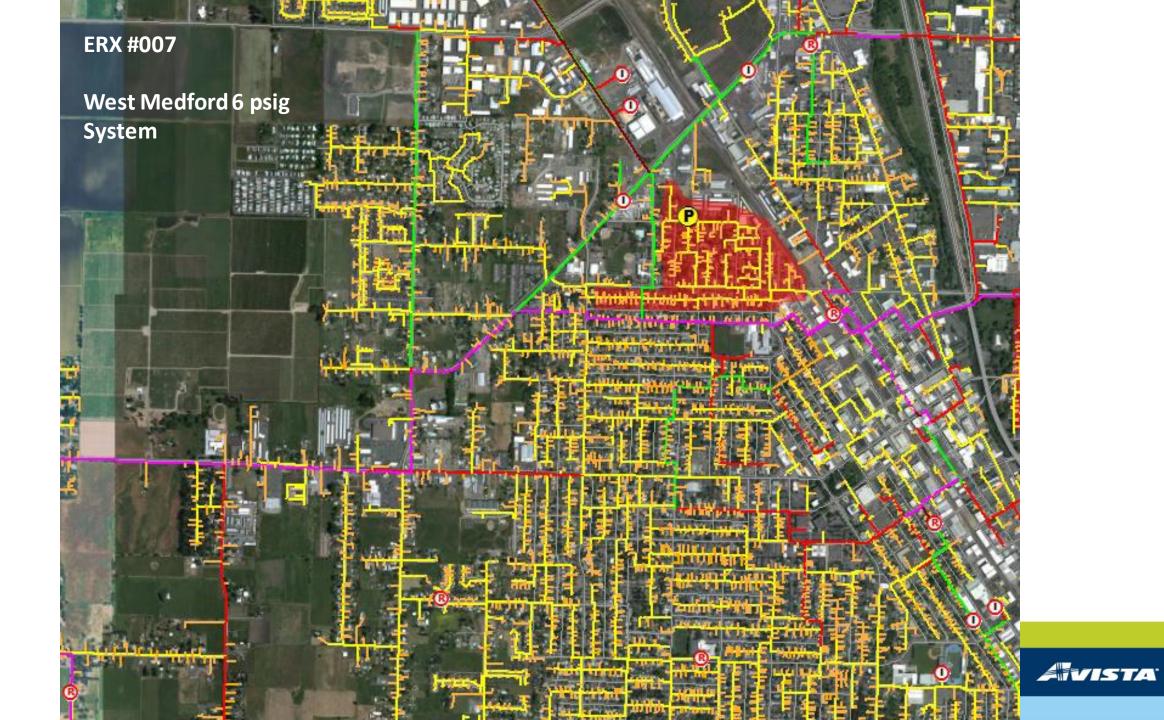

- Identify Low Pressure Areas
 - Number of feeds
 - Proximity to source
- Looking for Most Economical Solution
 - Length (minimize)
 - Construction obstacles (minimize)
 - Customer growth (maximize)

Long-term Planning Objectives


- Future Growth/Expansion
- Design Day Conditions
- Facilitate Customer Installation Targets

Monitoring Our System

- Electronic Pressure Recorders
 - Daily Feedback
 - Real time if necessary
- Validates our Load Studies



Real-time Pressure & Flow Monitoring

	: <u>T</u> ools <u>D</u> raw <u>A</u> rrange <u>\</u>			d				
			▼ B I U ▲ ±					
								1 0 0 2 + 2 +
🔁 🗟 📓	YPU DFC	± 🥰 🕷 🛱 🕻	> 🔳 🖬 100% 🔹	- 8 K 2+	🗠 ± 👗 🖻 🖷 Pas	ste Special a 🔇 =	• 🖪 영 %, 간 🛛 者 🚵	Show Details and Annotatio
≪ 🔇 3/12/2013		() 4/16/2	201 🛛 📎 🚿 🎋 🔂	U 🗉 🕨 😁				
🛶 🚽 Y:\Pi\AVISTA PI	GAS SUMMARY\WA GAS DA	SHBOARD.pdi		- 🏠 -	🚖 🏤			
		SPOKANE			_	COLVILLE	Switchboard	ID OR
merican Linen C HP LP T B1 B2	Eastern VVA Unive	Inland NVV Dairy	Mutual Materials C C	Sacred Heart C	State Corrections AD F HP LP T B	B. C. Arden C F HP LP T B1 B2	SCADA Scanning Sta PULLMAN	tus O Scanning CLARKSTON
I.F. Goodrich HP LP T B1 B2	Fairchild AFB C	Kaiser Mead AD F HP LP T B1 B2	NECT SW F HP LP T B1 B2	Shamrock Pavii G F HR LP T B1 B2	Travis Foundry C	Colville Dist. Press	Pullman Reg 352	Asotin Pressure HP LR AD B1
aker Commoditie C HP LP T B1 B2	Franz Bakery C	Kaiser Trentwood	9-Mile CG C	SCC C	Triumph Group	Chewelah Cntry (Pullman CG SW C	Clarkston Reg 43'
Duider Park G C HP LP T B1 B2	Gonzaga U C	Lakeland Village C	9-Mile Reg 56	SFCC AD	VA Hospital C	Chewelah Reg	WSU C	Clarkston Svc Ctr C HP LP AD B1
DA Sunset Reg	Hayford Rd. Reg	Liberty Lake Reg	Perry Wildrose 7	Spokane Court AD F HP LP T B1 B2	Valley Medical SW	BC Ply Kettle SW C	VVSU GVVSP C F HP LP T B1 B2	Lower Critchfield C
Central Pre-Mix C HP LP T B1 B2	Holy Family Hospi	Lyons Rd Reg 17: C	Progress Rd Reg C	Spokane Industrie C	Whitworth College C F HP LP T B1 B2	Kettle Falls Prs C		Upper Critchfield SW C F HP LP T B1 B2
Creach B2 B3 B4 B5	Huntwood C	Madison & Thorpe	Pulpwood C	Spokane Rock	Waste 2 Energy AD	Kettle Falls Gen G	OT-	IER
avenport Reg	Inland Asp Valley C F HP LP T B1 B2	Mead CG	Purina Mills	Spo West CG C	Waste Mgt CNG	Kettle CG-Indian T F HP LP T B1 B2	Connell CG C	Ritzville CG C F HP LP T B1 B2
aconess Hospi	Inland Asp Perry	Medical Lake C AC	Quarry Tile C F HP LP T B1 B2	Starr Rd Reg 47	W. St. Asphalt C	Lane Mt Silica SW	Goldendale CG C	Stevenson CG C F HP LP T B1 B2
istern St Hospit:		Mica CG C	Reg 700	Starr Road CG	W St Asp Velox	F HP LR T B1 B2	Lamb-Weston Boi	Warden CG C F HP LP T B1 B2
<u>HP LP IT B1 B2</u>	Legend	Out of Service	Lost Connection		General Inf	ormation	Lamb-Weston Firr	VVA Potato Co CC F HB LP T B1 B2
	-	lot Yet In Service	Blinking: In Alam	n	Read Rates Read Rate	Missing Data	Lind Pressure C	

AIVISTA

ERX #007: West Medford 6 psig System, OR

2019-2020 Winter **AVISTA**

Gas Load And Weather Forecast Report

Page: 1 Date: 01/08/20 01:00 PM Database: NUCPRD gs_fore_temp

Date: 01/08/2020

Area: LAGRANDE

AND LAUNANDE												
	Date:	Hi	Lo	HDD	Load							
SUN	01/05/20	39	29	30	3,827							
MON	01/06/20	39	32	29	3,984							
TUE	01/07/20	44	37	24	3,474							
WED	01/08/20	41	30	30	3,636							
THU	01/09/20	35	23	35	4,284							
FRI	01/10/20	35	27	33	4,220							
SAT	01/11/20	39	31	30	3,812							
SUN	01/12/20	39	31	30	3,788							
MON	01/13/20	33	26	34	4,241							
TUE	01/14/20	27	15	43	5,177							
		Ave	rage	4,044								
Area:	SPOKANE											
	Date:	Hi	Lo	HDD	Load							
SUN	01/05/20	40	31	31	119,295							
MON	01/06/20	44	33	24	108,349							
TUE	01/07/20	45	36	24	99,618							
WED	01/08/20	40	27	31	113,614							
THU	01/09/20	33	26	36	130,326							
FRI	01/10/20	34	27	33	127,052							
SAT	01/11/20	35	31	32	120,468							
SUN	01/12/20	32	23	38	132,989							
MON	01/13/20	24	14	46	163,049							
TUE	01/14/20	17	$\overline{1}$	55	190,891							
		Ave	rage		130,565							
		an	age		100,000							

	Date:	Hi	Lo	HDD	Load			
SUN	01/05/20	38	28	33	8,302			
MON	01/06/20	45	20	35	7,822			
TUE	01/07/20	47	21	29	7,345			
WED	01/08/20	38	28	32	7,872			
THU	01/09/20	36	21	37	8,027			
FRI	01/10/20	39	24	31	7,783			
SAT	01/11/20	38	28	32	7,650			
SUN	01/12/20	38	30	31	7,617			
MON	01/13/20	38	24	34	7,923			
TUE	01/14/20	30	20	40	8,786			
		Ave	rage	7,913				
Area	LEWISTON							
	LEMISTON							
. irea.	Date:	Hi	Lo	HDD	Load			
SUN		Hi 46	Lo 34	HDD 24	15,796			
	Date:	46 49			15,796 14,631			
SUN	Date: 01/05/20	46	34	24	15,796 14,631 12,168			
SUN MON TUE WED	Date: 01/05/20 01/06/20	46 49	34 41	24 18	15,796 14,631 12,168 14,115			
SUN Mon Tue	Date: 01/05/20 01/06/20 01/07/20	46 49 52	34 41 38	24 18 20	15,796 14,631 12,168 14,115 17,991			
SUN MON TUE WED	Date: 01/05/20 01/06/20 01/07/20 01/08/20	46 49 52 47	34 41 38 36	24 18 20 24	15,796 14,631 12,168 14,115			
SUN Mon Tue Wed Thu	Date: 01/05/20 01/06/20 01/07/20 01/08/20 01/09/20	46 49 52 47 39	34 41 38 36 29	24 18 20 24 30	15,796 14,631 12,168 14,115 17,991 17,517 15,788			
SUN MON TUE WED THU FRI SAT SUN	Date: 01/05/20 01/06/20 01/07/20 01/08/20 01/09/20 01/10/20	46 49 52 47 39 40	34 41 38 36 29 32	24 18 20 24 30 28	15,796 14,631 12,168 14,115 17,991 17,517 15,788 16,308			
SUN MON TUE WED THU FRI SAT	Date: 01/05/20 01/06/20 01/07/20 01/08/20 01/09/20 01/10/20 01/11/20	46 49 52 47 39 40 44	34 41 38 36 29 32 37	24 18 20 24 30 28 25	15,796 14,631 12,168 14,115 17,991 17,517 15,788 16,308 18,342			
SUN MON TUE WED THU FRI SAT SUN	Date: 01/05/20 01/06/20 01/07/20 01/08/20 01/09/20 01/10/20 01/10/20 01/11/20	46 49 52 47 39 40 44 42	34 41 38 36 29 32 37 36	24 18 20 24 30 28 25 26	15,796 14,631 12,168 14,115 17,991 17,517 15,788 16,308			

Area: KLAMATH FALLS

Area: MEDEORD

Date:

SUN 01/05/20

MON 01/06/20

TUE 01/07/20

Area: MEDFORD											
	Date:	Hi	Lo	HDD	Load						
SUN	01/05/20	47	34	25	27,581						
MON	01/06/20	49	30	27	30,760						
TUE	01/07/20	40	31	28	32,807						
WED	01/08/20	45	38	25	30,458						
THU	01/09/20	43	32	28	31,174						
FRI	01/10/20	43	33	26	30,409						
SAT	01/11/20	42	37	25	27,942						
SUN	01/12/20	43	38	26	27,696						
MON	01/13/20	40	33	28	31,906						
TUE	01/14/20	37	30	31	34,882						
		Ave	rage	:	30,562						
Area:	OTHER		-								

Hi Lo HDD

0 0 0

0

0

0 0

0 0

Average:

Load

210

207 207

208

Area: ROSEBURG

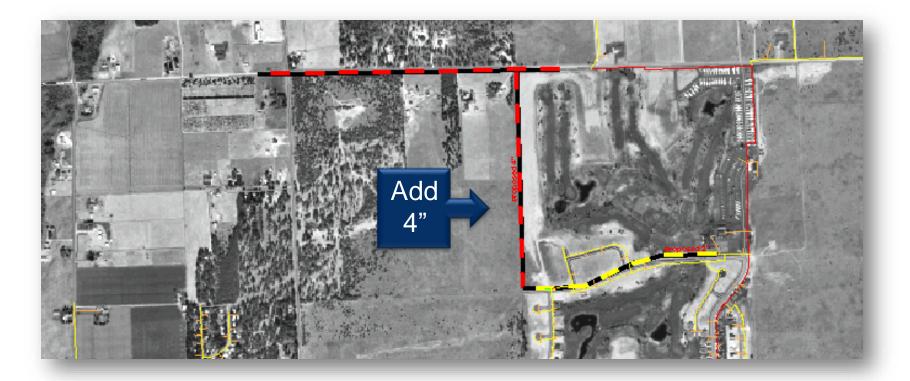
	NOOLDOIN.	<u> </u>			
	Date:	Hi	Lo	HDD	Load
SUN	01/05/20	49	41	20	7,334
MON	01/06/20	53	41	17	7,574
TUE	01/07/20	55	40	18	6,956
WED	01/08/20	48	41	21	7,363
THU	01/09/20	47	35	25	7,888
FRI	01/10/20	48	36	21	7,649
SAT	01/11/20	49	41	20	6,840
SUN	01/12/20	48	42	21	7,201
MON	01/13/20	46	37	23	7,942
TUE	01/14/20	46	35	26	8,553
		Ave	rage	:	7,530

Ar

AVISTA

2013-2014 Winter

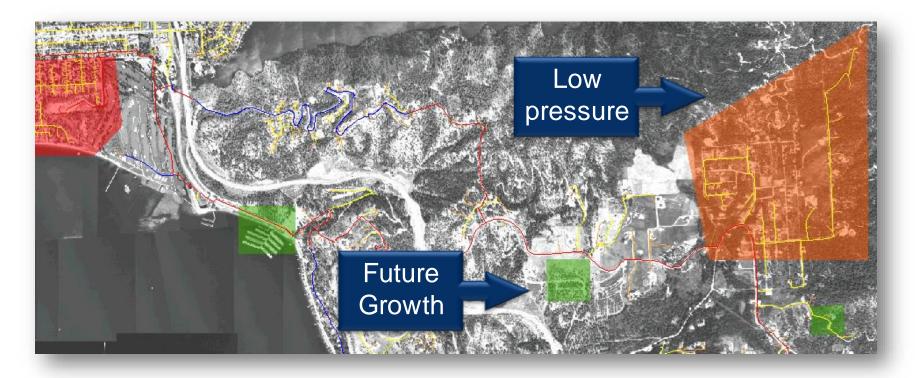
Area:	LaGrande					Area:	Klamath Falls					Area:	Medford					Area:	Roseburg				
	Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load		Date	Hi	Lo ł	HDD	Load
SAT	12/7/2013	18	-4	58	6,615	SAT	12/7/2013	21	-16	63	11,170	SAT	12/7/2013	32	11	44	40,462	SAT	12/7/2013	27	18	43	11,843
SUN	12/8/2013	9	-9	65	6,695	SUN	12/8/2013	6	-20	72	12,002	SUN	12/8/2013	25	2	52	47,855	SUN	12/8/2013	26	15	44	13,011
MON	12/9/2013	21	-4	56	5,389	MON	12/9/2013	14	-17	66	11,474	MON	12/9/2013	27	4	50	48,999	MON	12/9/2013	31	17	41	9,984
TUE	12/10/2013	29	16	42	4,897	TUE	12/10/2013	31	-6	52	9,299	TUE	12/10/2013	38	9	41	44,095	TUE	12/10/2013	34	19	38	10,867
WED	12/11/2013	30	15	42	4,689	WED	12/11/2013	36	7	43	8,799	WED	12/11/2013	42	17	35	35,943	WED	12/11/2013	40	28	31	9,197
THU	12/12/2013	35	20	37	4,131	THU	12/12/2013	39	9	41	8,191	THU	12/12/2013	42	20	34	35,273	THU	12/12/2013	40	30	30	8,730
FRI	12/13/2013	41	27	31	3,398	FRI	12/13/2013	42	17	35	7,206	FRI	12/13/2013	44	29	28	29,966	FRI	12/13/2013	42	33	27	8,112
SAT	12/14/2013	38	22	35	3,618	SAT	12/14/2013	45	15	35	6,887	SAT	12/14/2013	48	26	28	27,507	SAT	12/14/2013	43	30	28	7,686
SUN	12/15/2013	41	23	33	3,491	SUN	12/15/2013	47	16	33	6,681	SUN	12/15/2013	50	25	27	26,954	SUN	12/15/2013	45	32	26	7,418
MON	12/16/2013	40	22	34	3,642	MON	12/16/2013	47	16	33	6,812	MON	12/16/2013	49	27	27	27,580	MON	12/16/2013	44	34	26	7,682
Area:	Spokane					Area:	Lewiston																
	Date	Hi	Lo	HDD	Load		Date	Hi	Lo	HDD	Load												
SAT	12/7/2013	15	0	57	195,583	SAT				55	31,016												
SUN	12/8/2013	15	-2	58	183,544	SUN	12/8/2013	13	0	59	31,386												
MON	12/9/2013	20	9	51	166,628	MON	12/9/2013	26	8	48	25,901												
TUE	12/10/2013	25	12	46	156,433	TUE	12/10/2013	28	22	40	21,715												
WED	12/11/2013	29	15	43	145,441	WED	12/11/2013	31	17	41	22,022												
THU	12/12/2013	31	20	39	134,506	THU	12/12/2013	34	21	37	19,886												
FRI	12/13/2013	33	26	35	120,774	FRI	12/13/2013	38	29	31	17,448												
SAT	12/14/2013	35	27	34	114,257	SAT	12/14/2013	36	27	33	17,579												
SUN	12/15/2013	36	27	33	114,089	SUN	12/15/2013	38	27	32	17,570												
MON	12/16/2013	34	26	35	120,924	MON	12/16/2013	36	27	33	18,079												



What I do when "things" look bad?

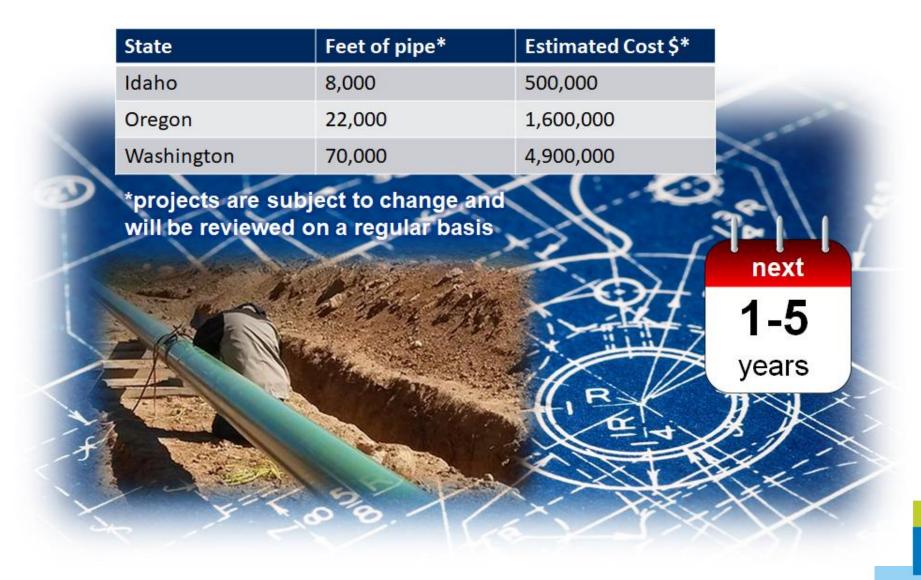
- 1) Notify service area manager
- 2) Show where and at what temperature we think we'll have low pressure
- 3) Identify possible solutions like:
 - Curtailing interruptible customers
 - Ask schools & businesses to voluntarily lower thermostats
 - Bring out CNG trailers
- 4) Continue to monitor forecast to see if temperatures improve or get worse
- 5) Share plan with Gas Controllers
- 6) Pray for warmer weather...

Communicating Solutions

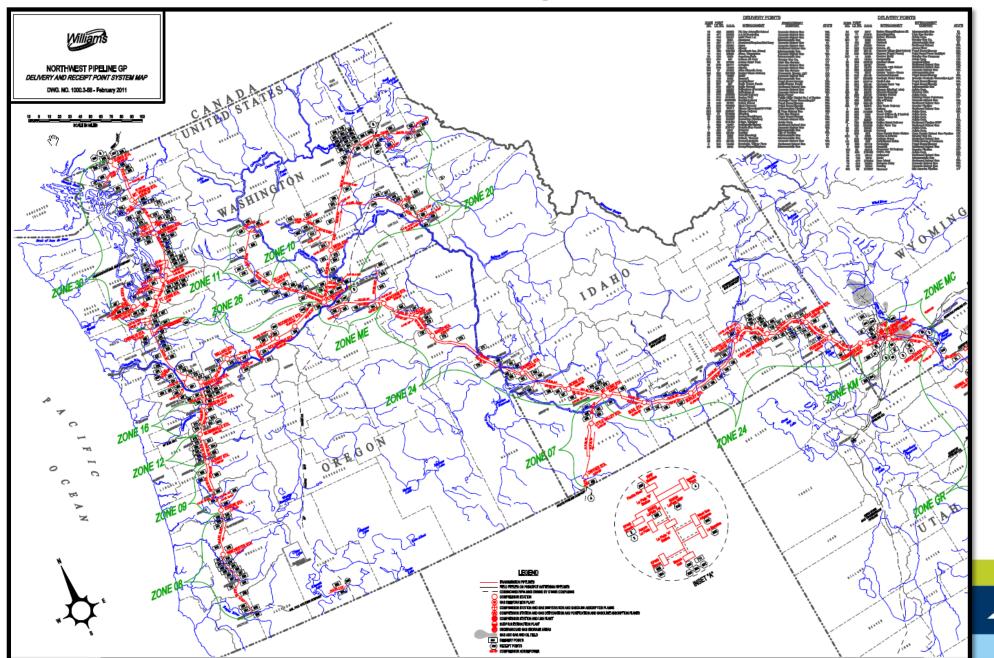


🖃 🗹 Gas Planning Proposals

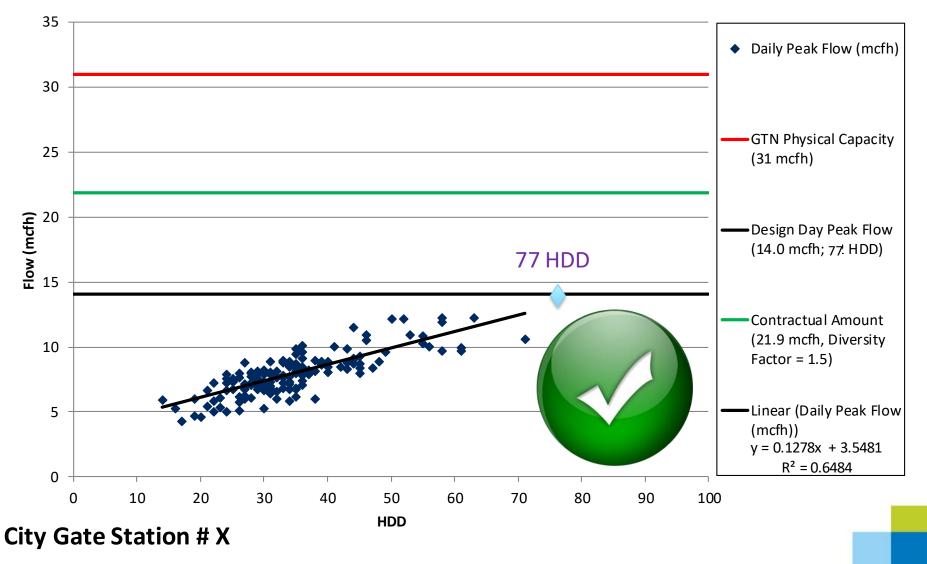
ATVISTA'


Gas Planning AOI

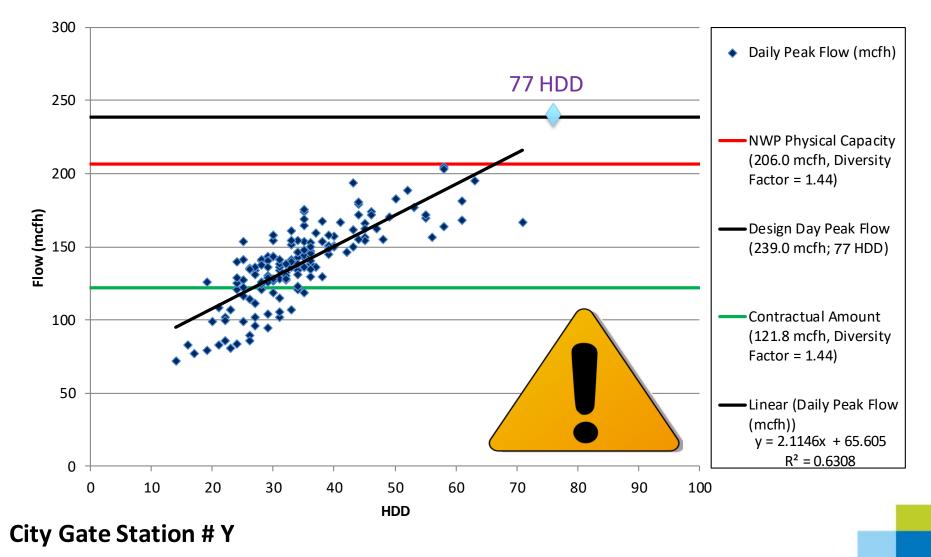
 Gas Planning AOI Area Type
Critical Pressure
Low Pressure
Miscellaneous
New Developments



Solutions: long-term reinforcements


AVISTA

Gate Station Capacity Review

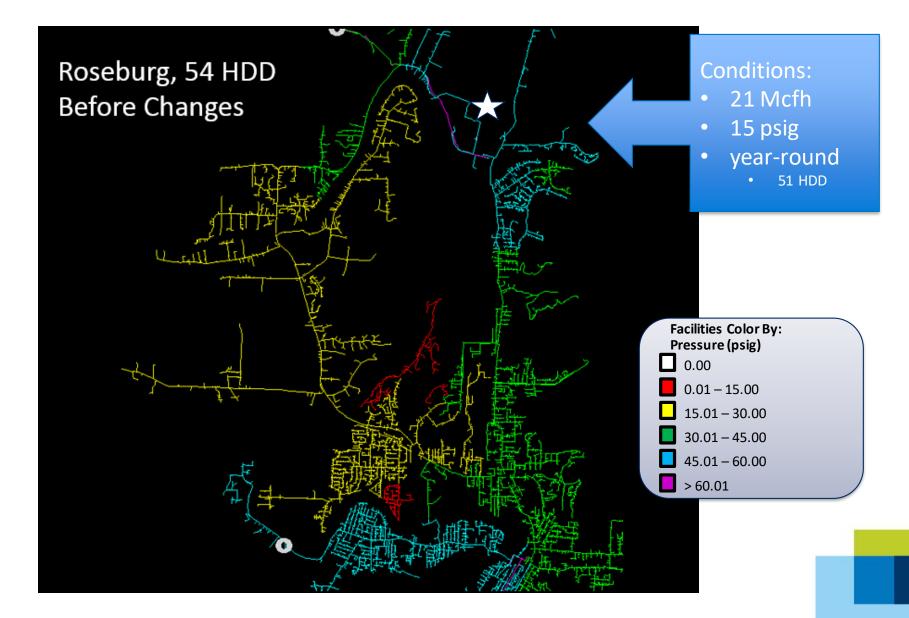

ATVISTA'

Gate Station Capacity Review (example)

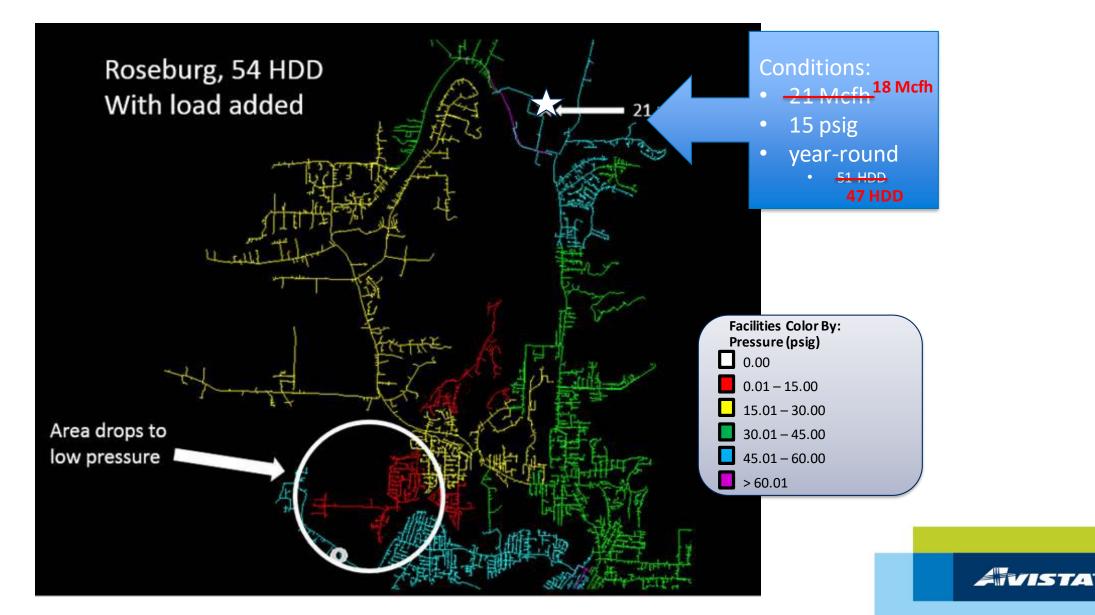
AVISTA

Gate Station Capacity Review (example)

AIVISTA


Recent Projects and Examples

New Agri-Industrial Customer Service Request

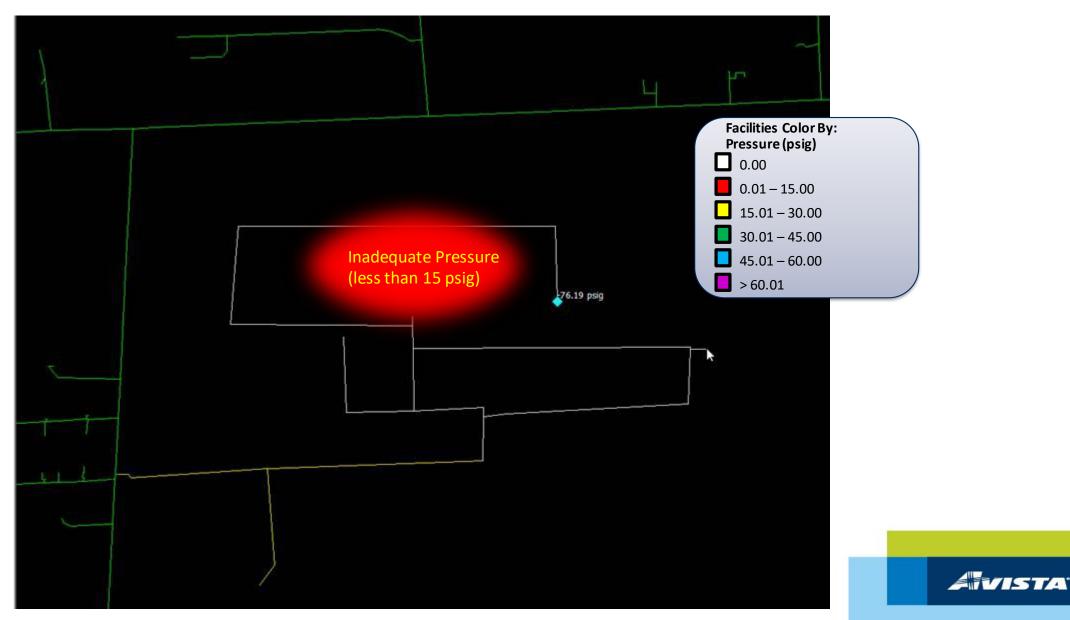

Roseburg, OR

Agri-Industrial Customer Service Request

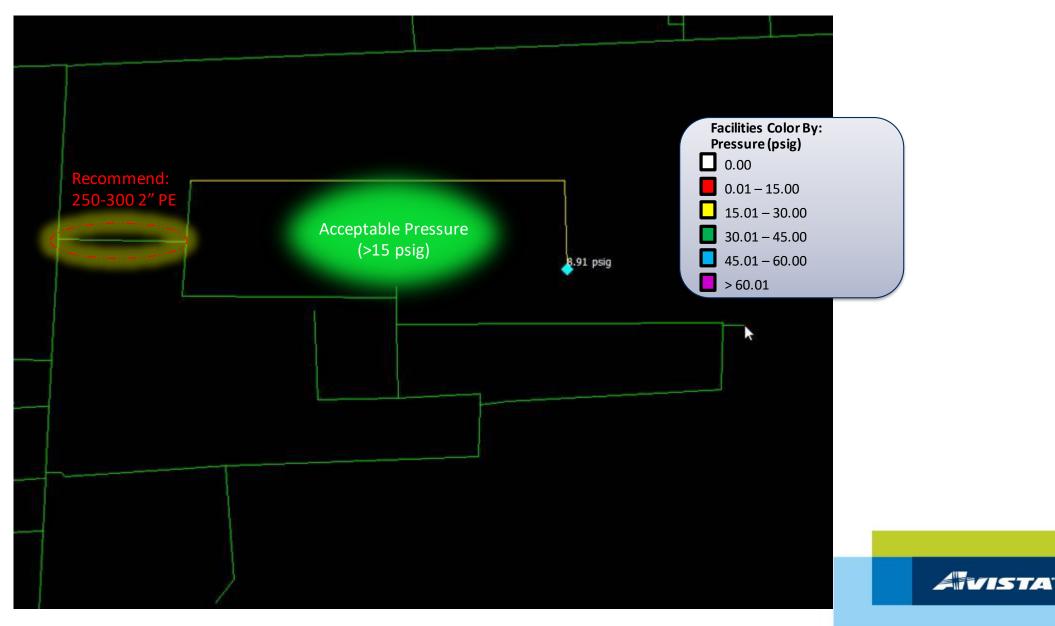
AVISTA

Agri-Industrial Customer Service Request

Residential Development Service Request


Deer Park, WA

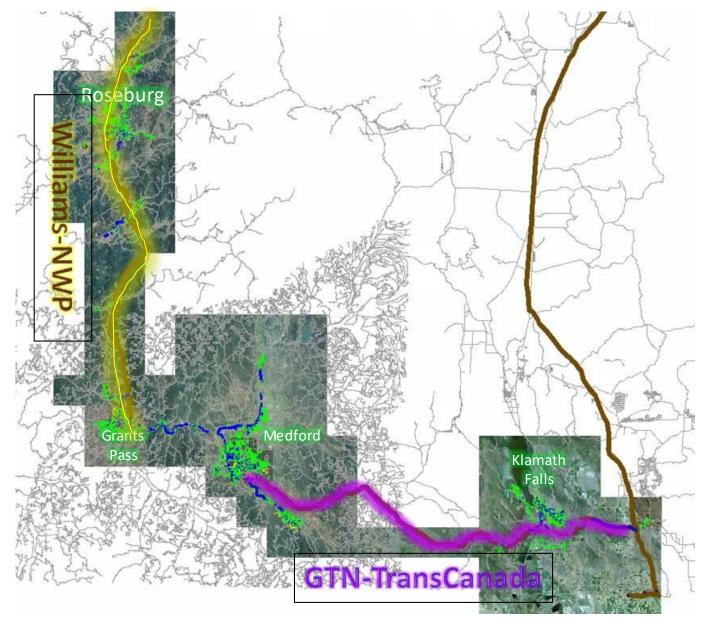
Residential Development Study



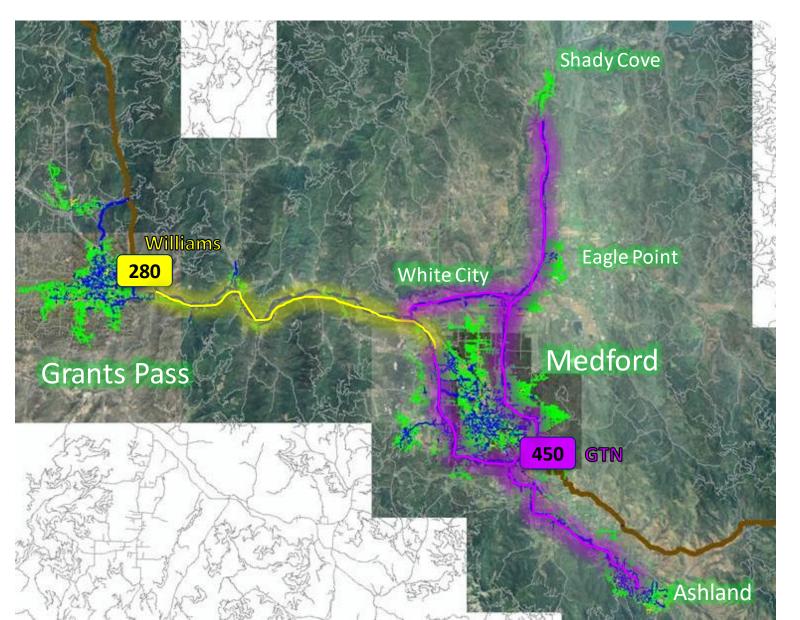
ATVISTA

Residential Development Study

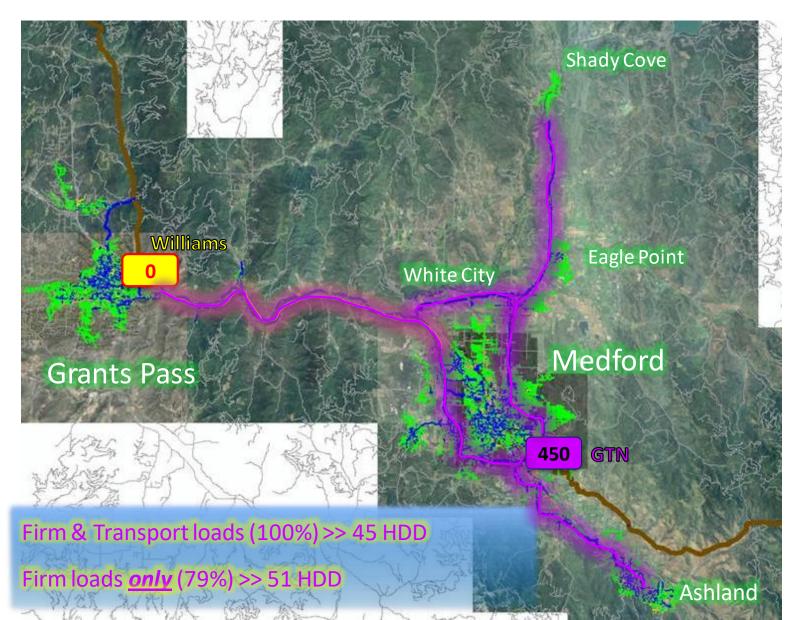
Residential Development Study



Enbridge Pipeline Rupture Effect on distribution


Medford, OR

Enbridge Pipeline Rupture effect


ATVISTA'

Enbridge Pipeline Rupture effect

ATVISTA

Enbridge Pipeline Rupture effect

AIVISTA

Questions and Discussion

Mission

Using technology to plan and design a safe, reliable, and economical distribution system

Unserved Demand and Supply Side Resource Options

Tom Pardee Planning Manager, Natural Gas Supply

When unserved demand does show up.....

There are a few questions we need to ask:

- 1. Why is the demand unserved?
- 2. What is the magnitude of the short? (i.e Are we 1 Dth or 1000 Dth's short?)
- 3. What are my options to meet it?

When current resources don't meet demand what could we consider?

- Transport capacity release recalls
- "Firm" backhauls
- Contract for existing available transportation
- Expansions of current pipelines
- Peaking arrangements with other utilities (swaps/mutual assistance agreements) or marketers
- In-service territory storage
- Satellite/Micro LNG (storage inside service territory)
- Large scale LNG with corresponding pipeline build into our service territory
- Structured products/exchange agreements delivered to city gates
- Biogas (assume it's inside Avista's distribution)
- Hydrogen blend (assume it's inside Avista's distribution)
- Avista distribution system enhancements
- Demand side management

110

New Resource Risk Considerations

- Does is get supply to the gate?
- Is it reliable/firm?
- Does it have a long lead time?
- How much does it cost?
 - New build vs. depreciated cost
 - The rate pancake
- Is it a base load resource or peaking?
- How many dekatherms do I need?
- What is the "shape" of resource?
- Is it tried and true technology, new technology, or yet to be discovered?
- Who else will be competing for the resource?

Potential New Supply Resources Considerations

- Availability
 - By Region which region(s) can the resource be utilized?
 - Lead time considerations when will it be available?
- Type of Resource
 - Peak vs. Base load
 - Firm or Non-Firm
 - "Lumpiness"
- Usefulness
 - Does it get the gas where we need it to be?
 - Last mile issues
- Cost

Regional Infrastructure – Potential Projects

- Enbridge T-South expansion: addition of 190 million cubic feet per day (MMcf/d) of firm capacity.
- 2. FortisBC Southern Crossing expansion: addition of 300-400 MMcf/d of bidirectional capacity.
- 3. Williams Northwest Pipeline (NWP) Sumas Express: still under assessment.
- TC Energy Gas Transmission Northwest (GTN) Trail West/N-Max: addition of 500 MMcf/d capacity, expandable to 1,000 MMcf/d.
- TC Energy other system enhancements: two projects to add a combined 525 MMcf/d of incremental firm transportation to the Alberta/BC export delivery point.
- Pembina Pacific Connector Gas Pipeline (PCGP) Project: Addition of 1,000 MMcf/d capacity to serve proposed Coos Bay LNG export facility.

Supply Resources - Modeled

Additional Resource	Size		Cost/Rat	es	Availability	Notes		
Unsubscribed GTN Capacity	Up to 50,000 Dth		GTN Rate	9	Now	Currently available unsubscribed capacity from Kingsgate to Spokane		
Medford Lateral Exp	50,000 Dth / Day		\$35M capital + G	TN Rate	2022	Additional compression to facilitate more gas to flow from mainline GTN to Medford		
		WA	ID	OR		Cost estimates obtained from a consultant; levelized cost		
Hydrogen	166 Dth / Day	\$48 / Dth	\$40 / Dth	\$46 / Dth	Varies	includes revenue requirements, expected carbon adder and assumed retail power rate		
Renewable Natural Gas –	625 Dth / Dov	WA	ID	OR	Varies	Costs estimates obtained from a consultant for each specific		
Distributed Landfill	635 Dth / Day	\$13 / Dth	\$13 / Dth	\$13 / Dth	vanes			
Renewable Natural Gas –	1,814 Dth / Day	WA	ID	OR	Varies			
Centralized Landfill		\$11 / Dth	\$11 / Dth	\$12 / Dth	valles			
Renewable Natural Gas – Dairy	635 Dth / Day	WA	ID	OR	Varies	type of RNG; levelized costs include revenue requirements, distribution costs, and projected carbon intensity adder/(savings).		
Nenewable Natural Gas – Dairy		\$34 / Dth	\$39 / Dth	\$33 / Dth	valles	This cost also includes any incentives from bills such as		
Renewable Natural Gas – Waste	513 Dth / Day	WA	ID	OR	Varies	Washington House Bill 2580 or Oregon Senate Bill 334		
Water		\$19 / Dth	\$18 / Dth	\$19 / Dth	valles			
Renewable Natural Gas – Food	298 Dth / Day	WA	ID	OR	Varies			
Waste to (RNG)	296 Dtn / Day	\$38 / Dth	\$39 / Dth	\$38 / Dth	vanes			
Plymouth LNG	241,700 Dth w/70,500 Dth deliverability		NWP Rat	e	Now	Provides for peaking services and alleviates the need for costly pipeline expansions Pair with excess pipeline MDDO's to create firm transport		

Future Supply Resources – Not Modeled

Other Resources to Consider

Additional Resource	Size	Cost/Rates	Availability	Notes
Co. Owned LNG	600,000 Dth w/ 150,000 of deliverability	\$75 Million plus \$2 Million annual O&M	2024	On site, in service territory liquefaction and vaporization facility
Various pipelines – Pacific Connector, Trails West, NWP Expansion, GTN Expansion, etc.	Varies	Precedent Agreement Rates	2022	Requires additional mainline capacity on NWPL or GTN to get to service territory
Large Scale LNG	Varies	Commodity less Fuel	2024	Speculative, needs pipeline transport
In Ground Storage	Varies	Varies	Varies	Requires additional mainline transport to get to service territory

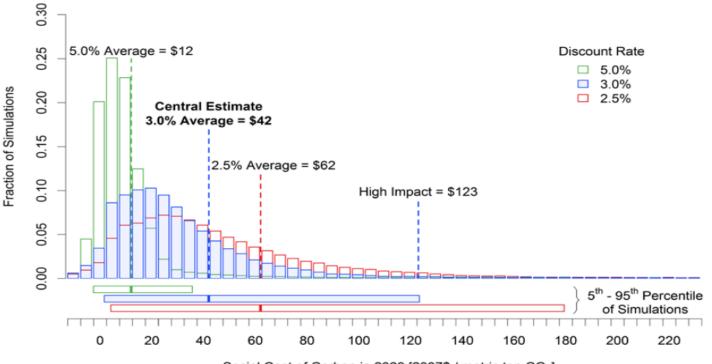
Carbon Costs

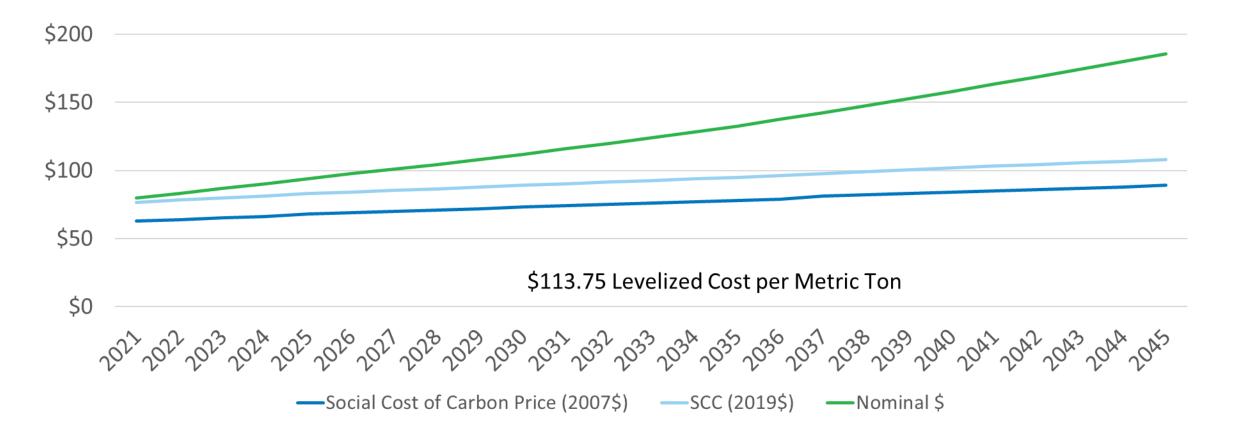
Tom Pardee Planning Manager, Natural Gas Supply

Cost of Carbon and Sendout

- Monthly costs are loaded into SENDOUT
- These costs will differ based on the requirements or an expected program type by state
- These costs are input at the transportation level in order to correctly account for the cost of carbon in each area regardless of supply basin

Social Cost of Carbon

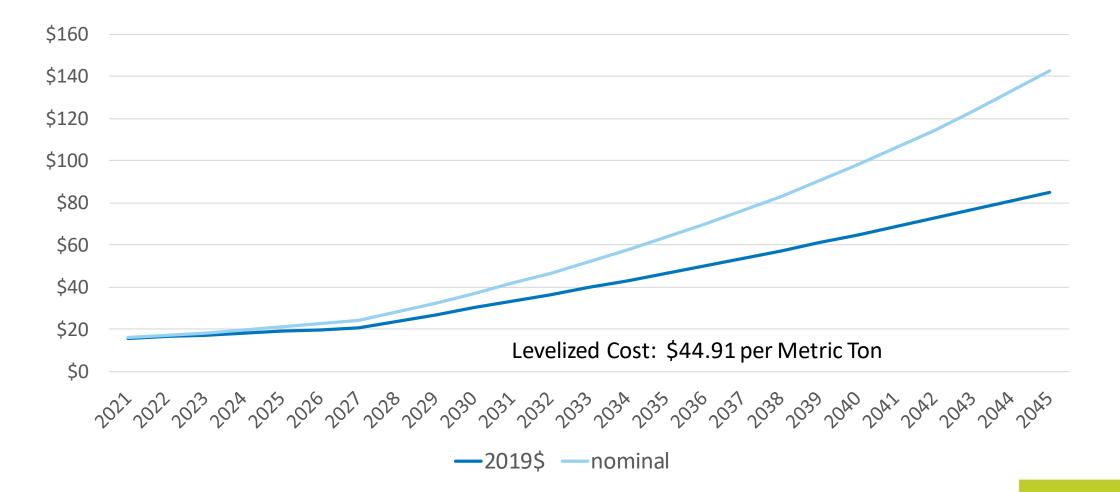



Figure ES-1: Frequency Distribution of SC-CO₂ Estimates for 2020³

Social Cost of Carbon in 2020 [2007\$ / metric ton CO2]

 Social cost of carbon dioxide in 2007 dollars using the 2.5% discount rate, listed in table 2, <u>technical support document</u>: Technical update of the social cost of carbon for regulatory impact analysis under Executive Order No. 12866, published by 118 the interagency working group on social cost of greenhouse gases of the United States government, August 2016.

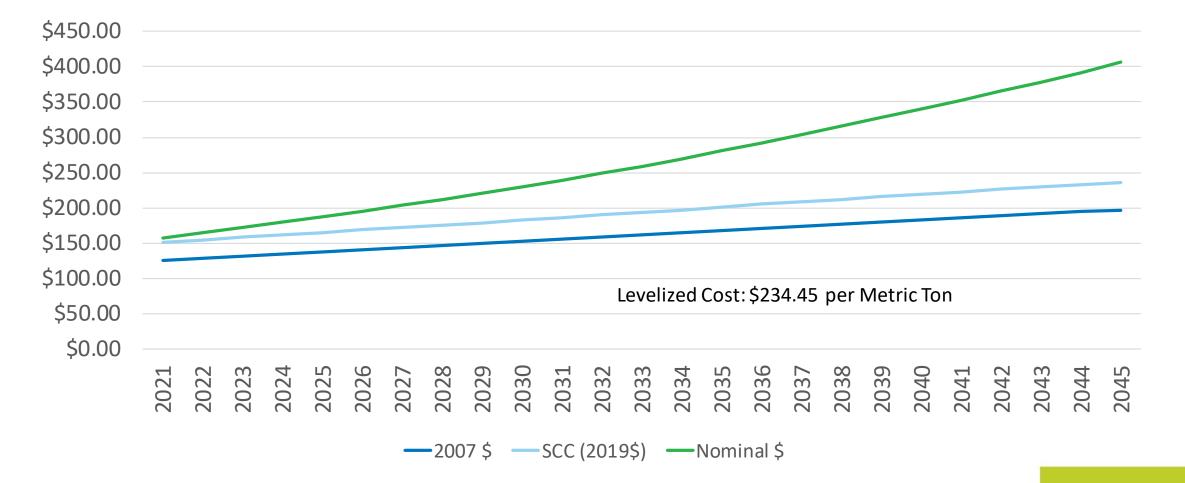
AWISTA'


Washington – Carbon adder

• Social cost of carbon dioxide in 2007 dollars using the 2.5% discount rate, listed in table 2, <u>technical support document</u>: Technical update of the social cost of carbon for regulatory impact analysis under Executive Order No. 12866, published by the interagency working group on social cost of greenhouse gases of the United States government, August 2016.

- Adjust to 2019\$ using Bureau of Economics GDP
- Adjust to Nominal \$ using 2.11% annual inflation rate

Oregon – Carbon adder

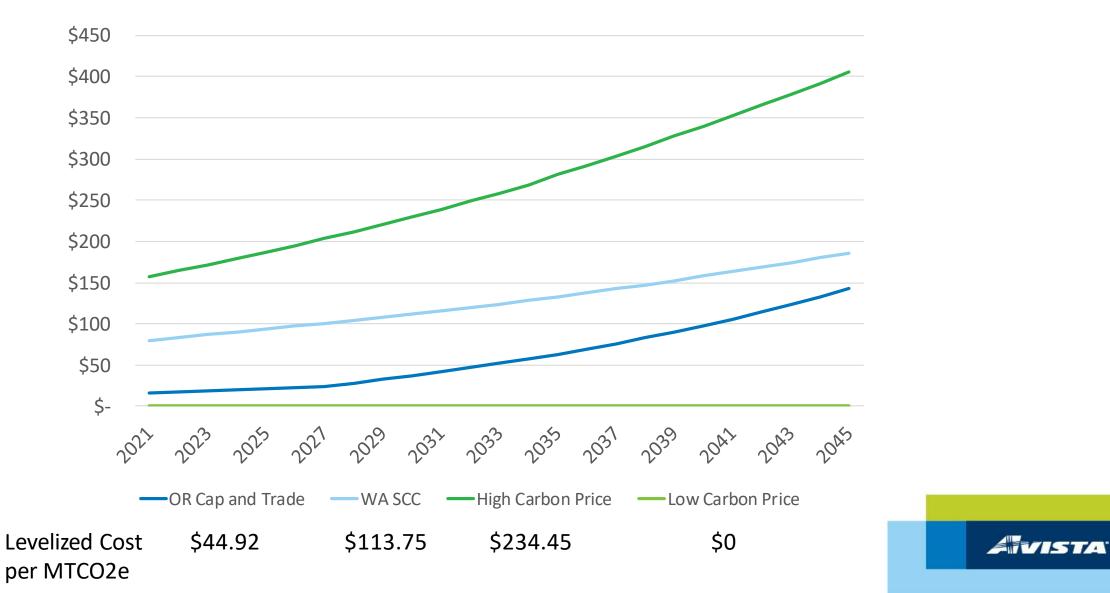


Source: Wood Mackenzie North America gas markets long-term outlook – H1 2020 ⁰ *Modeled as an expected cost of California's cap and trade program

120

All jurisdictions - Carbon adder High sensitivity

• EPA <u>– Social Cost of Carbon</u>


121

- Adjust to 2019\$ using Bureau of Economics GDP
- Adjust to Nominal \$ using 2.11% annual inflation rate

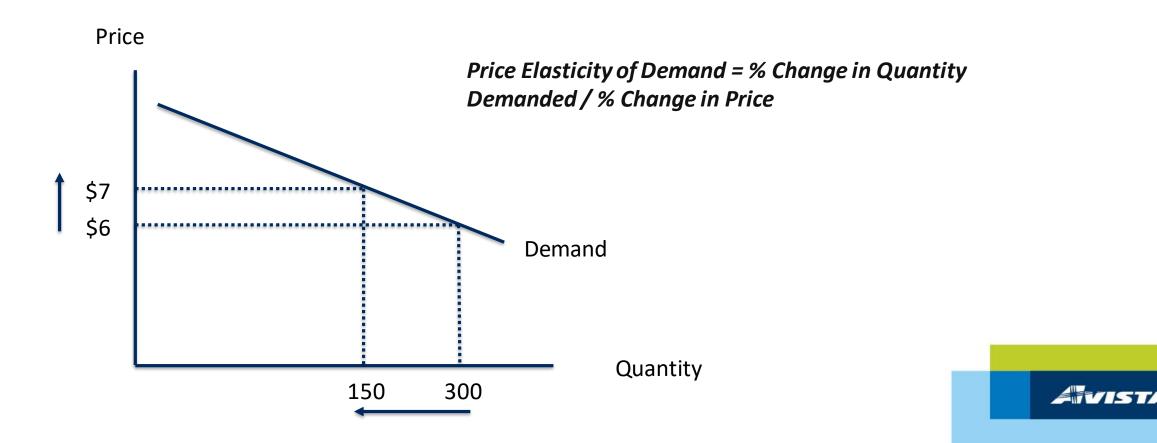
High Carbon Scenario - SCC @ 95% @ 3%

Carbon Costs

122

Expected Case Cost of Carbon by State - Summary

- Washington Social cost of carbon @ 2.5% discount rate;
 - upstream emissions associated with natural gas drilling and transportation of natural gas to its end use.
- Oregon is based off a Wood Mackenzie estimate for Cap and Trade
- Idaho carbon prices will not be included



Price Elasticity

Tom Pardee Planning Manager, Natural Gas Supply

Price elasticity is a method used by economists to measure how supply or demand changes based on changes in price.

Price Elasticity Factors Defined

- Price elasticity is usually expressed as a numerical factor that defines the relationship of a consumer's consumption change in response to price change.
- Typically, the factor is a negative number as consumers normally reduce their consumption in response to higher prices or will increase their consumption in response to lower prices.
 - For example, a price elasticity factor of -0.081 means:
 - A 10% price increase will prompt a 0.81% consumption decrease
 - A 10% price **decrease** will prompt a 0.81%
 - consumption increase

Summary

- The elasticity as measured in the Medford and Roseburg areas will be used for the entire system as estimated elasticity.
- 0.81% decrease only for each price rise of 10%
- This elasticity is measured through heat coefficients and annual price changes

Sensitivities

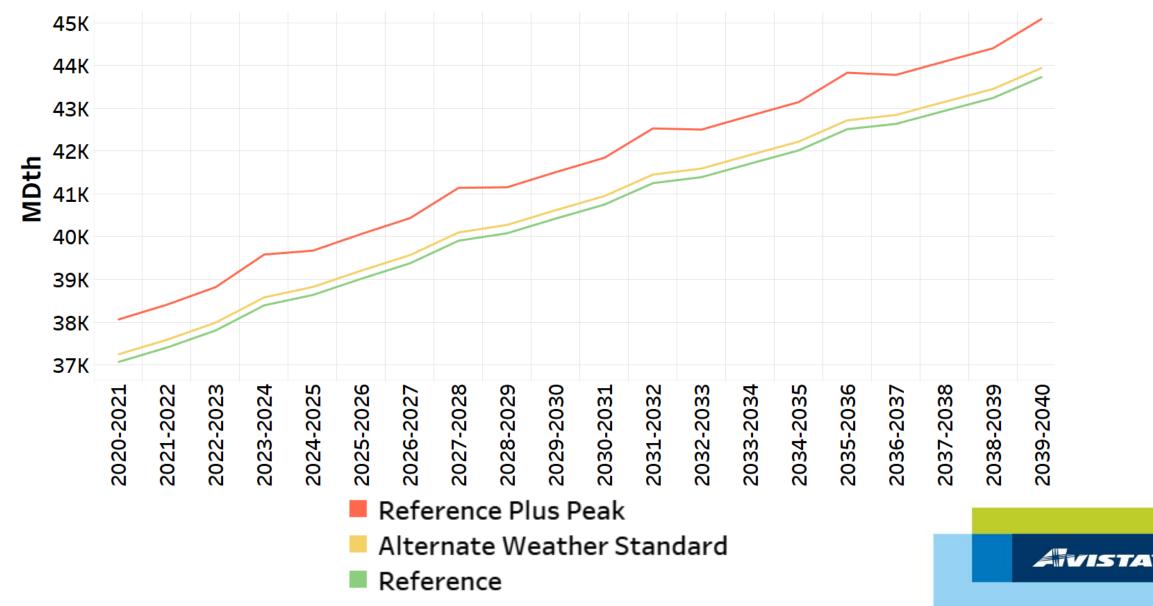
Michael Brutocao Analyst, Natural Gas Supply

Sensitivities Summary

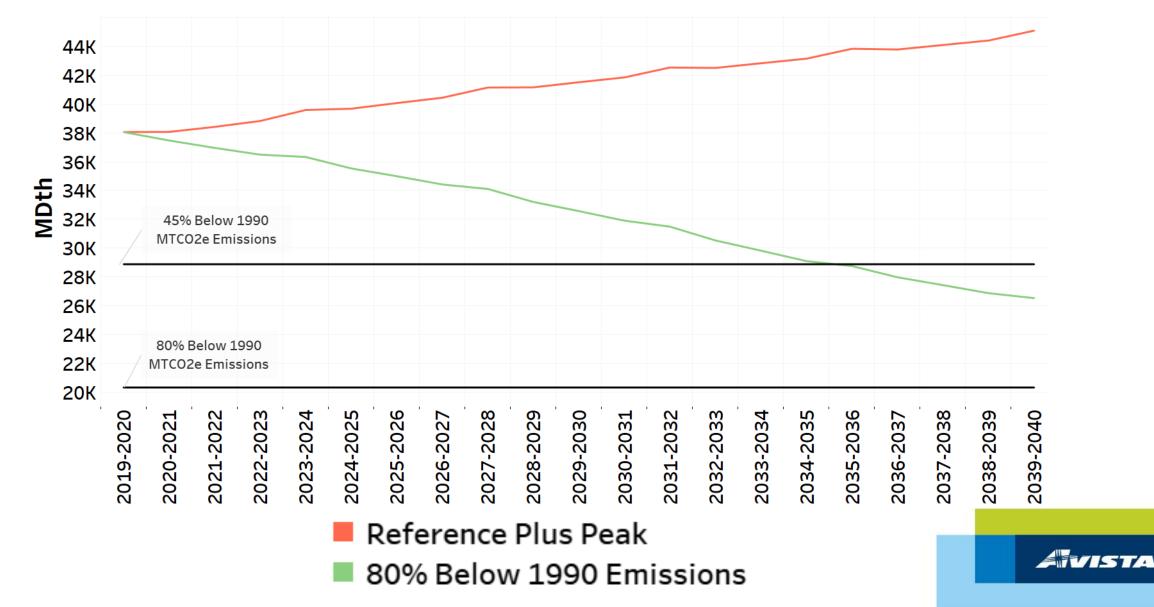
Influence Type	Sensitivity	Customer Growth Rate	Use per Customer	Weather	Demand Side Management	Prices	Elasticity	First Year System Unserved	Location Unserved
	Reference	Reference		20 Year Average	None		None	-	-
	Reference Plus Peak	IVEIEIEIICE		Planning Standard				2035	Washington
	Low Cust	Low Growth						-	-
	High Cust	High Growth						2029	Washington
	Alternate Weather Standard		Historical	Coldest in 20yrs		Expected		2035	Washington
	DSM			20 Year Average				-	-
	Peak plus DSM							2039	ldaho
	80% below 1990 emissions – OR/WA only			_				-	-
DEMAND	2 Year use per customer Alternate	Reference	2 Year Historical					2035	Washington
	5 Year use per customer Alternate		5 Year Historical					2035	Washington
INFLUENCING - DIRECT	JP Outage Only (0% capacity)		3 Year Historical	Planning Standard				2021	Washington
DIRECT	AECO Outage Only (0% capacity)							2020	WA, ID
	Sumas Outage Only (0% capacity)							2020	Medford
	Rockies Outage Only (0% capacity)							2020	La Grande
	JP Outage Only (50% capacity)							2021	Washington
	AECO Outage Only (50% capacity)							2026	Washington
	Sumas Outage Only (50% capacity)							2025	Washington
F	Rockies Outage Only (50% capacity)							2025	La Grande
	NWP Outage (0% capacity)							2020	WA, ID, La Grande
	GTN Outage (0% capacity)							2020	WA, ID, Klamath Falls
	NWP Outage (50% capacity)							2020	WA, La Grande
	GTN Outage (50% capacity)						[2026	Washington

Sensitivities Summary (Continued)

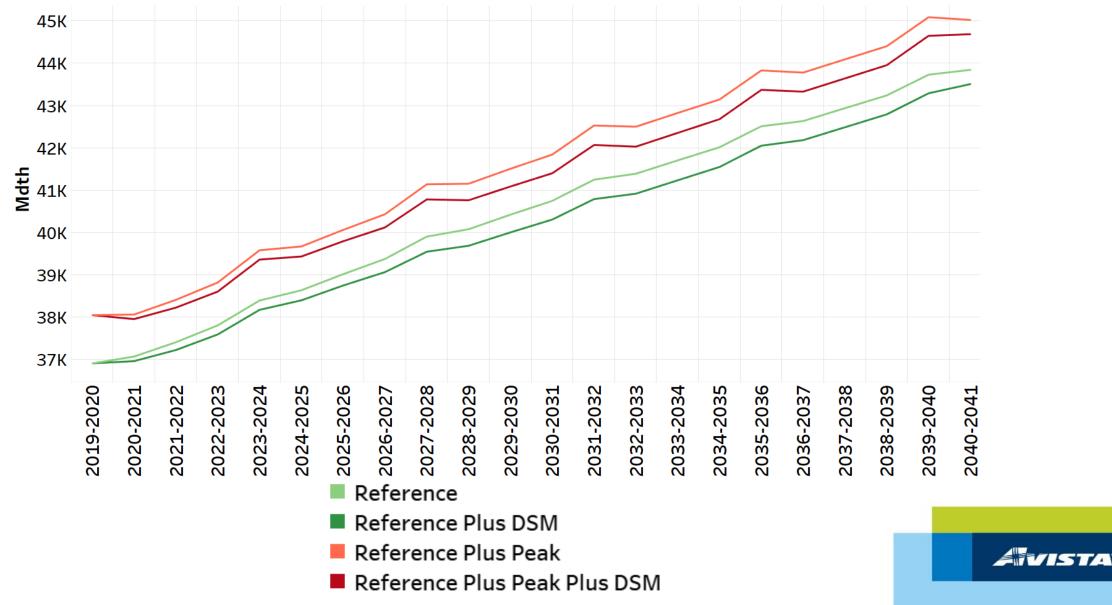
Influence Type	Sensitivity	Customer Growth Rate	Use per Customer	Weather	Demand Side Management	Prices	Elasticity	First Year System Unserved	Location
	Expected Prices			Ŭ	None	Expected	Expected	-	-
	Low Prices		3 Year Historical			Low		-	-
PRICE INFLUENCING -	High Prices					High		-	-
INDIRECT	Carbon Cost - High (SCC 95% at 3%)					Expected		-	-
	Carbon Cost - Expected (SCC 2.5% (WA) & Cap&Red (OR))	Reference						-	-
	Carbon Cost - Low \$0							-	-
EMISSIONS INFLUENCING	High Upstream Emissions 2.47% leakage (EDF study)							-	-
	Expected Upstream Emissions (0.79% leakage)							-	-
	No Upstream Emissions							-	-
	Expected Global Warming Potential (20 Years)							-	-
	Expected Global Warming Potential (100 Years)							-	-

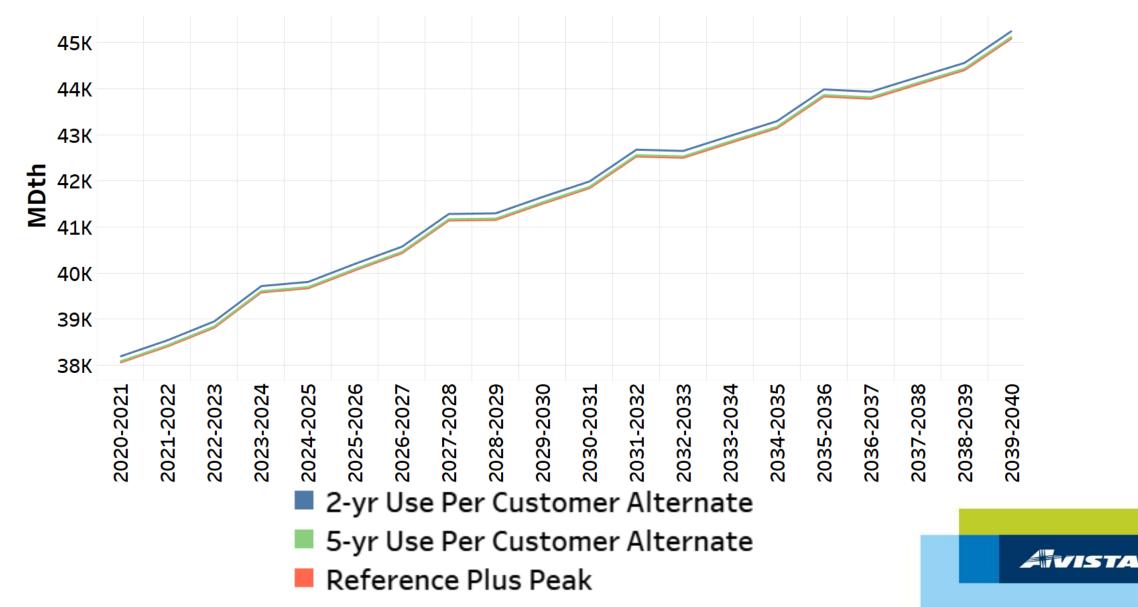


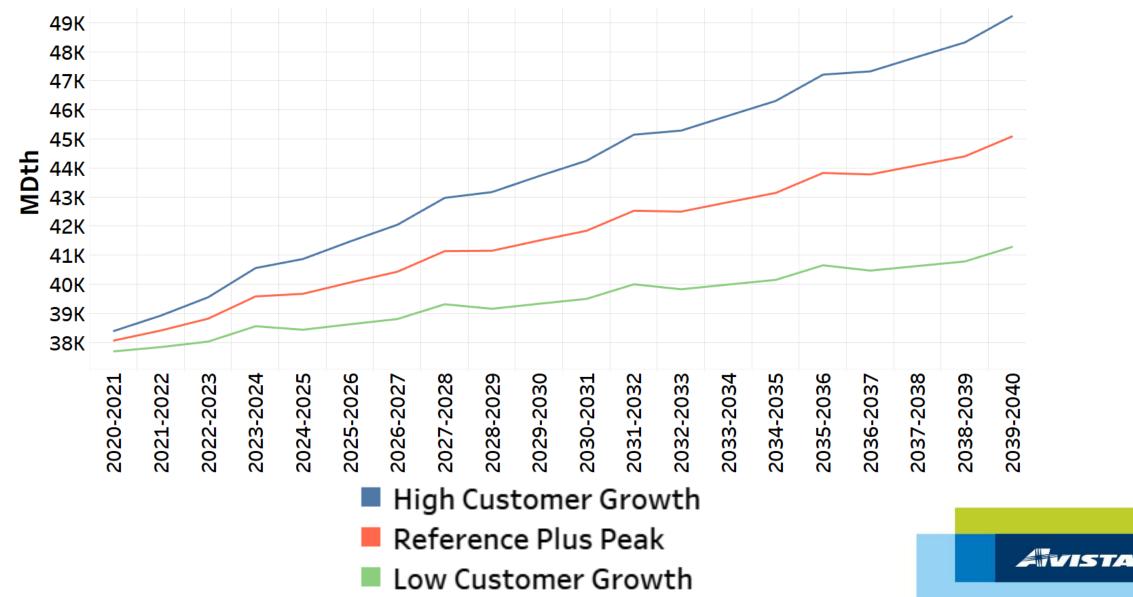
First Year Peak Demand Unserved (11/1/2020 – 10/31/2040)

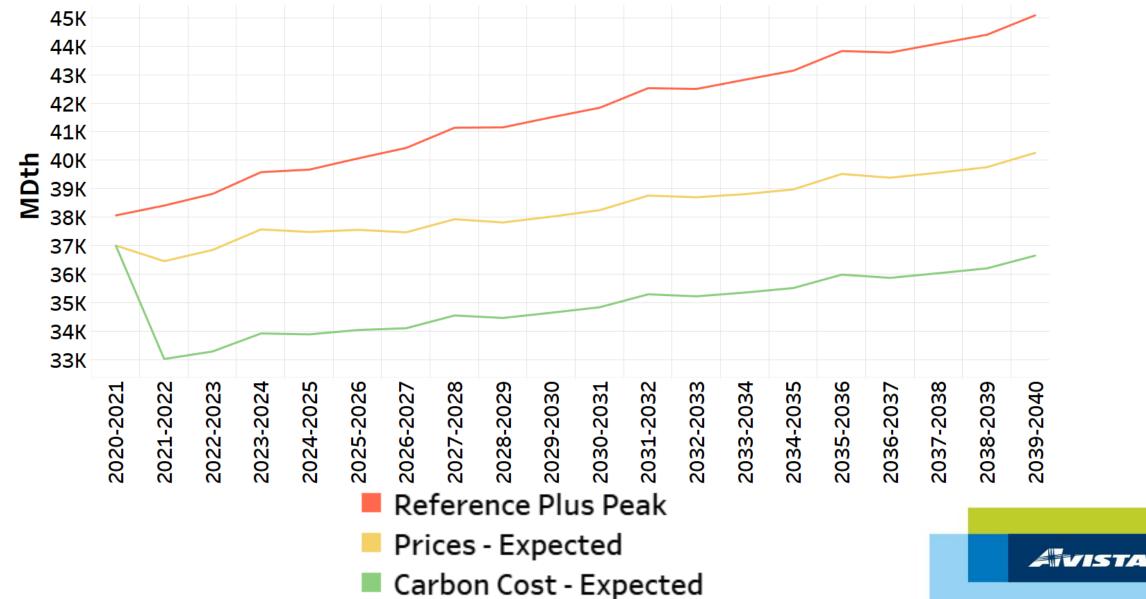

	Washington	Idaho	La Grande	Medford	Klam Falls	Roseburg
Reference Plus Peak	2035	2039				
High Customer Growth	2029	2038	2035			
Alternate Weather Standard	2035					
Reference Plus Peak Plus DSM		2039				
2-yr Use Per Customer	2035	2039				
5-yr Use Per Customer	2035					
Outage (JP - 0%)	2021	2022		2028		
Outage (JP - 50%)	2021					
Outage (AECO - 0%)	2020	2020				
Outage (AECO - 50%)	2026	2028				
Outage (Sumas - 0%)	2026	2021		2020		2032
Outage (Sumas - 50%)	2025	2038		2035		
Outage (Rockies - 0%)	2021	2023	2020	2031		2033
Outage (Rockies - 50%)	2028	2039	2025			
Outage (NWP - 0%)	2020	2020	2020	2021		2028
Outage (NWP - 50%)	2020	2023	2020	2029		
Outage (GTN - 0%)	2020	2020		2026	2020	2028
Outage (GTN - 50%)	2026	2028				

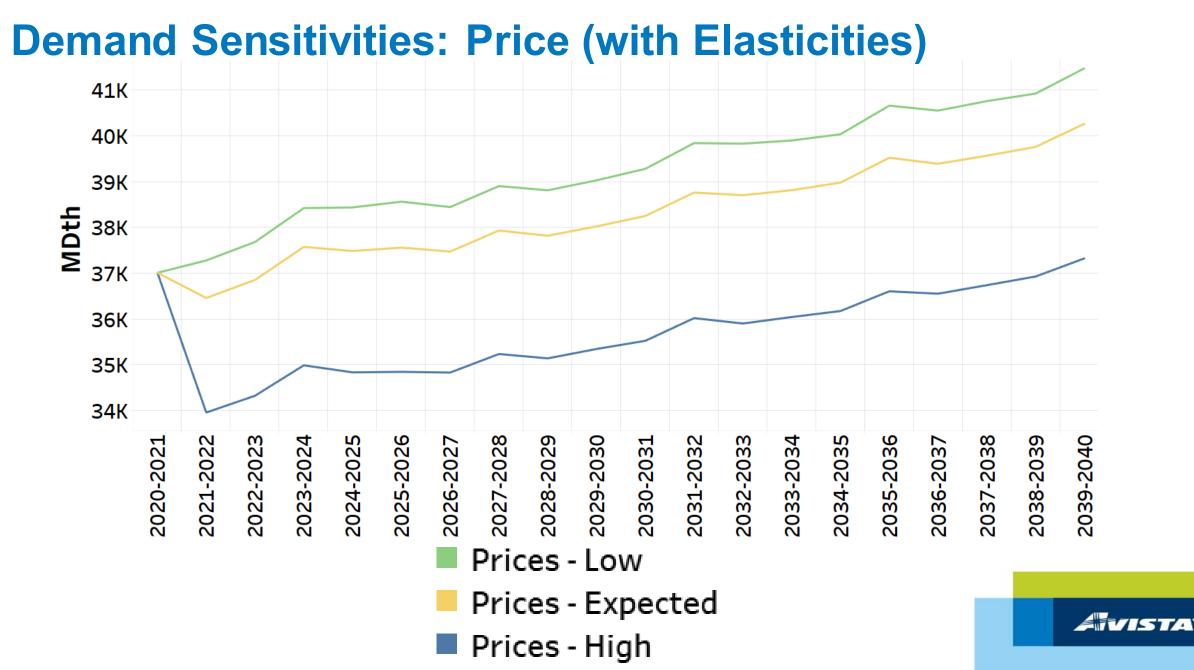
*Sensitivities not listed above have no unserved demand.


Demand Sensitivities: Weather

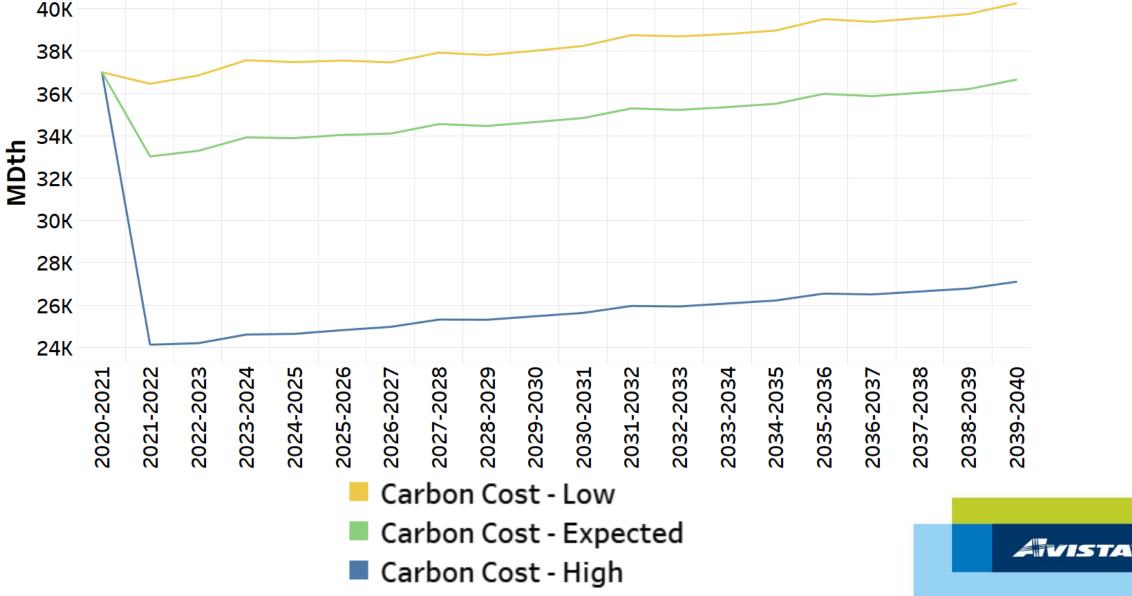

Demand Sensitivities: 80% Below 1990 Emissions

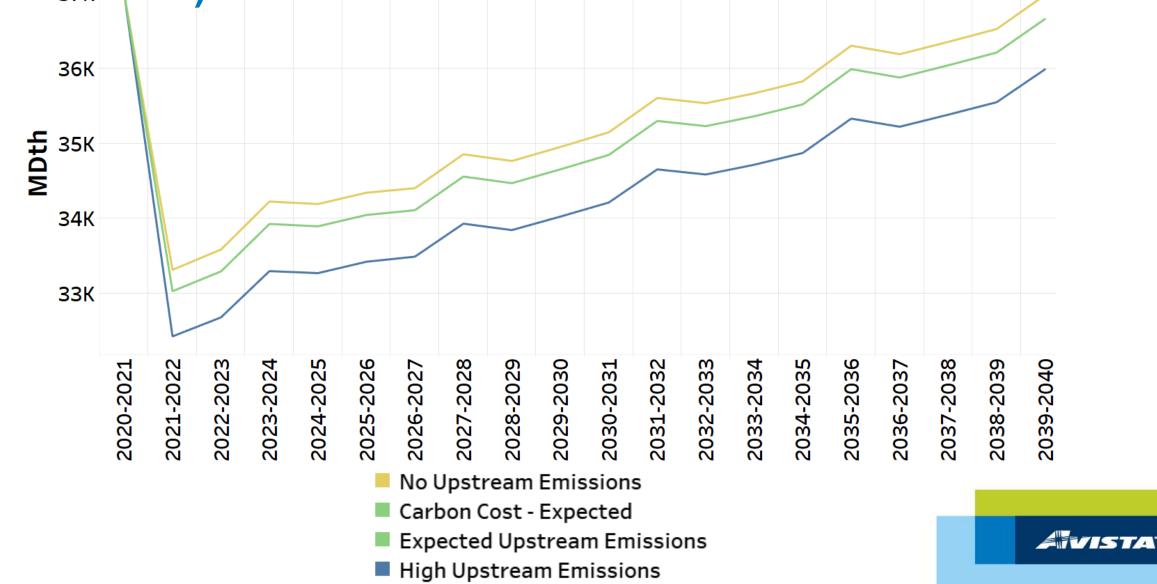

Demand Sensitivities: Demand Side Management


Demand Sensitivities: Use Per Customer

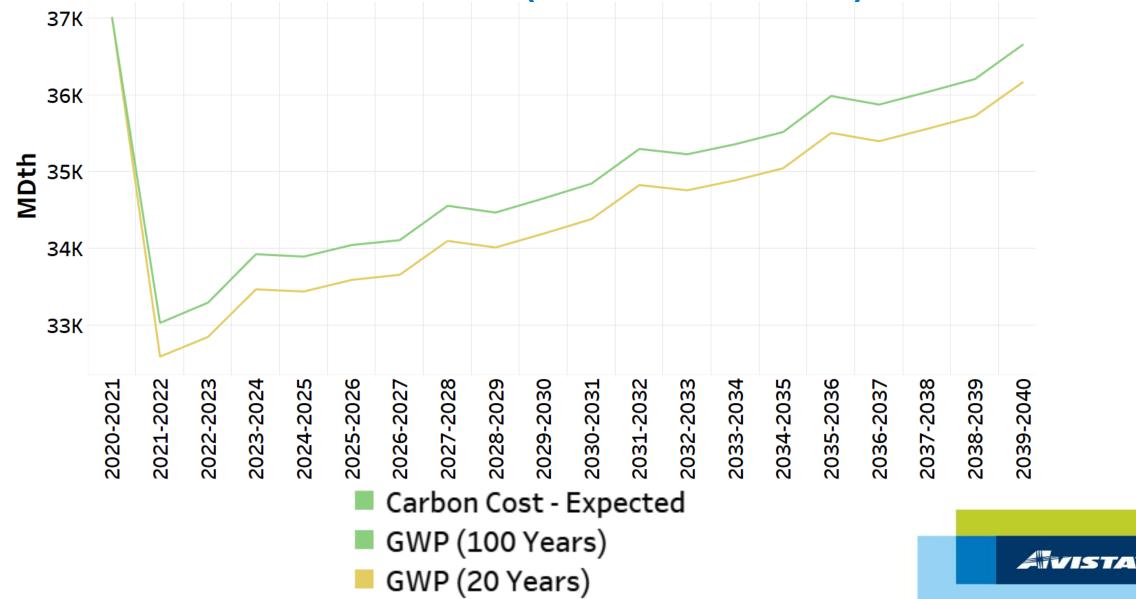


Demand Sensitivities: Customer Growth

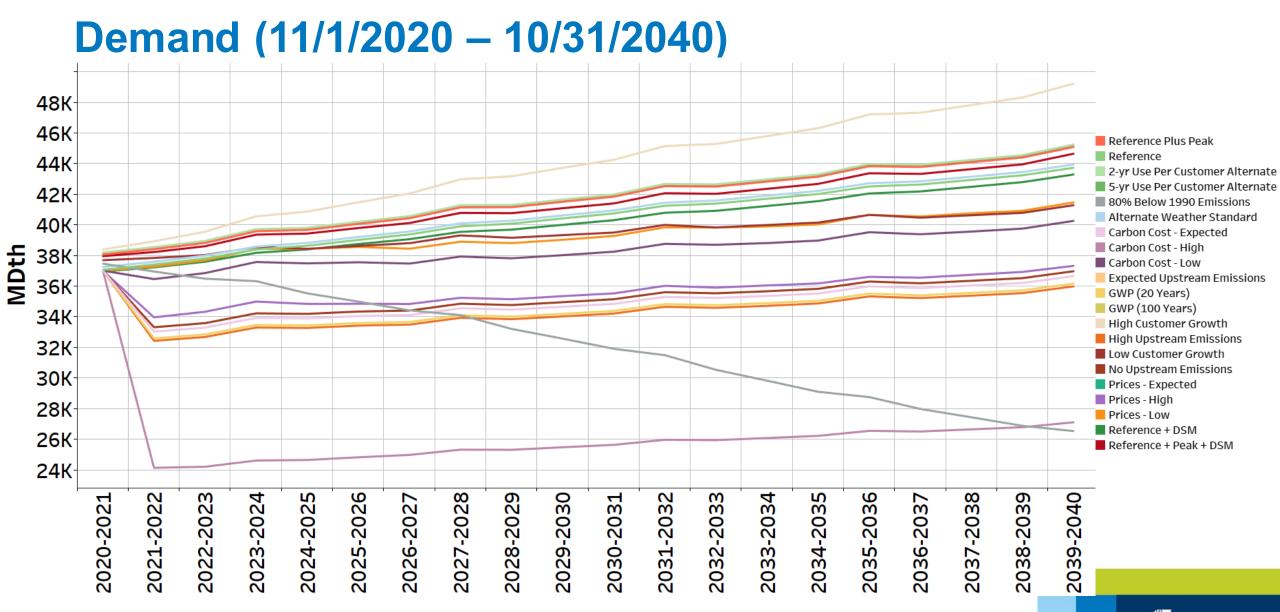

Demand Sensitivities: Price and Carbon Elasticities



Demand Sensitivities: Carbon (with Elasticities) 40K 38K 36K 34K

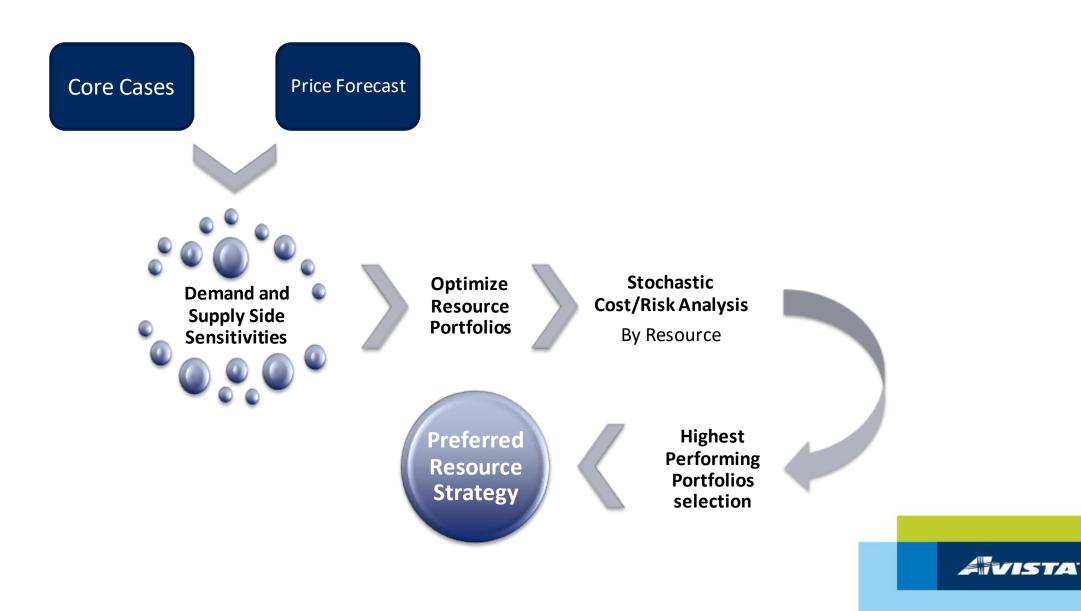


Demand Sensitivities: Upstream Emissions (with Elasticities)



140

Demand Sensitivities: GWP (with Elasticities)


141

142

ATVISTA'

Sensitivities, Scenarios, Portfolios

Proposed Scenarios

Proposed Scenarios	Expected <u>Case</u>	Average <u>Case</u>	Low Growth <u>& High Prices</u>	Carbon Reduction	High Growth & Low Prices
Customer Growth Rate	Reference Case Cust Growth Rates		Low Growth Rate	Reference Case Cust Growth Rates	High Growth Rate
Use per Customer			3 yr + Price	Elasticity	
Demand Side Management	Expected Ca	se CPA	High Prices DSM	Low Prices DSM	
Weather Planning Standard	99% probability of coldest in 30 years	20 year average		99% probability of coldest in 30 years	
GWP			100-Year	GWP	
Prices Price curve	Expecte	ed	High	Low	
Carbon Legislation (\$/Metric Ton)	SCC @ 2.5% WA; Cap and Trade forecast - OR; NO Carbon adder in ID		Carbon Cost - High (SCC 95% at 3%)	SCC @ 2.5% WA; Cap and Trade forecast - OR; NO Carbon adder in ID	\$0
RESULTS First Gas Year Unserved Washington Idaho Medford Roseburg Klamath La Grande Scenario Summary	Most aggressive peak planning case utilizing Average Case assumptions as a starting point and layering in peak day 99% probability. The	Case most representative of our average (budget, PGA, rate case) planning criteria.	Stagnant growth assumptions in order to evaluate if a shortage does occur. Not likely to occur.	2050. The case assumes the overall	Aggressive growth assumptions in order to evaluate when our earliest resource shortage could occur. Not likely to occur.
	likelihood of occurrence is low.				

*1,000 Draws per scenario will be run stochastically

2020 Natural Gas IRP Schedule

TAC 1: Wednesday, June 17, 2020: TAC meeting expectations, 2020 IRP process and schedule, energy efficiency update, actions from 2018 IRP, and a Winter of 2018-2019 review. Procurement Plan and Resource Optimization benefits. fugitive Emissions, Weather Analysis, Weather Planning Standard

TAC 2 (Dual Meeting with Power side): Thursday, August 6, 2020: Market Analysis, Price Forecasts, Cost Of Carbon, Environmental Policies

• Demand Results and Forecasting – August 18, 2020

TAC 3: Wednesday, September 30, 2020: Distribution, Avista's current supply-side resources overview, supply side resource options, renewable resources, Carbon cost, price elasticity, sensitivities and portfolio selection modeling.

TAC 4: Wednesday, November 18, 2020: CPA results from AEG & ETO, review assumptions and action items, final modeling results, portfolio risk analysis and 2020 Action Plan.

