

2025 Electric Integrated Resource Plan Technical Advisory Committee Meeting No. 11 Agenda Tuesday, July 30, 2024 Virtual Meeting – 8:30 am to 10:00 am PTZ

Topic Introductions	Staff John Lyons
Connected Communities Program Update	Kit Parker
Avista – Spokane Tribe Energy Resiliency Partnership Update	Meghan Pinch
Preferred Resource Strategy Results	Planning Team
Avoided Costs	James Gall
Remaining TAC Schedule & Scenario Planning	James Gall

Microsoft Teams meeting

Join on your computer, mobile app or room device <u>Click here to join the meeting</u> Meeting ID: 264 797 739 040 Passcode: MLVkp8 <u>Download Teams | Join on the web</u> **Or call in (audio only)** +1 509-931-1514,,525313571# United States, Spokane Phone Conference ID: 525 313 571# <u>Find a local number | Reset PIN</u> <u>Learn More | Meeting options</u>

2025 IRP TAC 11 Introductions

John Lyons, Ph.D. Technical Advisory Committee Meeting No. 11 July 30, 2024

Today's Agenda

Introductions, John Lyons

Connected Communities Program Update, Kit Parker

Avista – Spokane Tribe Energy Resiliency Partnership Update, Meghan Pinch

Preferred Resource Strategy Results, Planning Team

Avoided Costs, James Gall

Remaining TAC Schedule and Scenario Planning, James Gall

Remaining 2025 Electric IRP TAC Schedule

DRAFT

• TAC 12: August 13, 2024: 8:30 to 10:00 (PTZ) – Scheduled

- Preferred Resource Strategy Results (continued)
- Portfolio Scenario Analysis (continued)
- LOLP Study Results (continued)
- QF Avoided Cost
- Propose to extend TAC 12 meeting to 2.5 hours and move to:
 - September 10, 2024, 9:00 am to 11:30 am (PTZ)
 - September 17, 2024, 9:00 am to 11:30 am (PTZ)
 - September 17, 2024, 1:00 pm to 3:30 pm (PTZ)

• September 2, 2024- Draft IRP Released to TAC with the following chapters:

- Economic and Load Forecast
- Long Term Position
- Distributed Energy Resource Options
- Supply Side Resource Options
- Transmission Planning and Distribution
- Preferred Resource Strategy
- Washington Clean Energy Action Plan

Remaining 2025 Electric IRP TAC Schedule

- Virtual Public Meeting- Natural Gas & Electric IRP (September 2024)
 - Recorded presentation
 - Daytime comment and question session (12pm to 1pm- PST)
 - Evening comment and question session (6pm to 7pm- PST)
- October 1, 2024- Remainder of Draft IRP Released to TAC with the following chapters:
 - Executive Summary
 - Introduction, Interested Party Involvement, and Process Changes
 - Existing Supply Resources
 - o Market Analysis
 - o Portfolio Scenarios
 - \circ Action Plan

Connected Communities

Kit Parker, Renewables Products and Services Manager Technical Advisory Committee Meeting No. 11 July 30, 2024

Create flexible load

VISTA edo

- Reduce energy costs
- Maintain occupant comfort
- Foster community-based solutions
- Develop scalable model

50-75 Residential and 25-50 Commercial

During Program Flex Events

another time in the day

Project Timeline

PROJECT PLANNING

PILOT **ASSESSMENT**

Strategic planning and design for delivering demand flexibility and energy measures.

2023

July

○→∢ →

2025 January

Enrollment of first

of planned energy

measures

participants and testing

2025 July

enrollment and analysis

of preliminary testing

TESTING

PHASE

Completion of

from flex events

2026

ANALYZE &

EVALUATE

examination of energy

efficiency measures and

Aggregation and

grid service testing

REVIEW &

Finalization of a business

model playbook allowing

for program replication

PUBLISH

and management

Avista - Spokane Tribe Energy Resiliency Partnership Update

Meghan Pinch, Manager, Energy Efficiency Programs Technical Advisory Committee Meeting No. 11 July 30, 2024

Clean Energy Fund Grid Modernization Grant Award Overview

Awarded project: Financial support to design and engineer a clean and resilient energy storage project in partnership with the Spokane Tribe. The project will support increased energy resilience and energy sovereignty. Funding does not include construction of project.

Project Funding: \$480,000 in total (Avista to provide \$240,000 in-kind match to \$240,000 in funding from Department of Commerce).

Modernization grants will support utilities across the state in building and integrating new technologies that support their clean energy transition plans.

Spokane Tribe Grid Resiliency Station

"Switchable" platform that could enable power to be switched between three or more stepdown circuits in an emergency

Would replace elevated building transformers currently behind post office / trading post

Would create a "critical loads" circuit to provide power to Tribal Admin building, Wynecoop Memorial Health Clinic, and Public Safety buildings during emergencies

Could leverage existing generation resources to sustain summer loads for up to 7 days

Equipment Layout Concept

Recent Activities and Next Steps

- Avista provided technical assistance to the Tribe in applying for \$2.75 million from Department of Commerce Tribal Clean Energy Grant
- Additional funding been committed from a mix of federal formula Tribal DOE grants and Avista-provided funding
- Total project costs are expected to be around \$6.65 million
- Avista and the Spokane Tribe are considering applying for additional grant funding for additional scope items

2025 Electric Integrated Resource Plan Draft Preferred Resource Strategy

James Gall Technical Advisory Committee Meeting No. 11 July 30, 2024

Preferred Resource Strategy (7/16/2024)

2

Nameplate MW	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
Shared System Re	source																			
Mrkt/Trans	40	4	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural Gas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	0	0	0	0	0	100	100	200	0	0	0	0	0	0	0	0	0	0	0	0
Storage	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PtoG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Geothermal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0
RNG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Washington																				
Mrkt/Trans	0	0	0	0	0	0	0	0	0	0	0	50	0	0	50	50	50	50	0	50
Natural Gas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solar	0	1	1	1	1	1	101	1	1	1	1	1	1	1	1	1	1	1	200	5
Wind	0	0	0	200	200	100	0	0	0	0	0	0	0	0	0	140	0	120	0	200
Storage	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	104	62
PtoG	0	0	0	0	0	0	0	0	0	0	0	0	90	0	0	0	196	0	94	0
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150
Geothermal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Idaho																				
Mrkt/Trans	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural Gas	0	0	0	0	99	0	0	0	0	0	0	90	0	0	0	0	124	0	0	0
Solar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Storage	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	0
PtoG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Geothermal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RNG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AIVISTA

Revised Preferred Resource Strategy (2026-35)

	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Total
Washington (MW- Nameplate)											
Market	25.8	2.5	6.4	-	-	-	-	-	-	-	34.6
Regional Transmission	-	-	-	-	-	-	-	198.4	-	-	198.4
Natural Gas	-	-	-	-	-	-	-	-	-	-	-
Solar	-	0.5	0.6	0.6	0.7	0.8	0.8	1.0	0.5	0.5	5.9
Wind	-	-	-	200.0	200.0	165.9	66.0	104.0	-	-	736.0
Storage	-	-	-	-	-	-	-	-	-	-	-
Power to Gas	-	-	-	-	-	-	-	-	-	-	-
Nuclear	-	-	-	-	-	-	-	-	-	-	-
Geothermal	-	-	-	-	-	-	-	-	-	-	-
Biomass	-	-	-	-	-	-	-	-	-	-	-
Total	25.8	3.0	6.9	200.6	200.7	166.7	66.8	303.4	0.5	0.5	974.9
Cumulative Demand-Side Management											
Demand Response (MW)	0.5	14	3.0	49	72	87	94	10.2	11 1	12.4	
Energy Efficiency (aMW)	3.4	7 1	11.2	15.8	19.7	24.0	29.2	34.5	39.8	44.5	
	0.1	7.1	11.2	10.0	10.1	21.0	20.2	01.0	00.0	11.0	
Idaho (MW- Nameplate)	1			Į		1	ļ		I	[
Market	13.6	1.3	3.3	-	-	-	-	-	-	-	18.2
Regional Transmission	-	-	-	-	-	-	-	101.6	-	-	101.6
Natural Gas	-	-	-	-	90.2	-	-	-	-	-	90.2
Solar	-	-	-	-	-	-	-	-	-	-	-
Wind	-	-	-	-	-	34.1	34.0	53.3	-	-	121.4
Storage	-	-	-	-	-	-	-	-	-	-	-
Power to Gas	-	-	-	-	-	-	-	-	-	-	-
Nuclear	-	-	-	-	-	-	-	-	-	-	-
Geothermal	-	-	-	-	-	-	-	-	-	-	-
Biomass	-	-	-	-	-	-	-	-	-	-	-
Total	13.6	1.3	3.3	-	90.2	34.1	34.0	155.0	-	-	331.5
Cumulative Demand-Side Management											
Demand Response (MW)	_	_	_	0.1	0.3	0.7	10	12	1.3	13	
Energy Efficiency (aMW)	12	2.6	4 1	5.0	7.2	8.6	10.5	12.6	14.5	16.3	
	1.2	2.0		0.0	1.2	0.0	10.0	12.0	17.0	10.0	
Resource Reductions (MW)	0	0	0	12	64	0	0	0	22	0	164.0

~78,000 MWh Biannual EE Target

AVISTA

Revised Preferred Resource Strategy (2036-45)

	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	Total
Washington (MW- Nameplate)											
Market	-	-	-	-	-	-	-	-	-	-	-
Regional Transmission	-	-	-	-	-	-	-	-	-	-	-
Natural Gas	-	-	-	-	-	-	-	-	-	-	-
Solar	0.5	0.5	0.5	0.5	0.5	0.5	0.5	180.5	120.5	0.6	305.1
Wind	-	-	-	-	-	140.0	-	120.0	108.4	200.0	568.4
Storage	-	-	-	-	-	-	-	90.0	86.1	85.3	261.4
Power to Gas	-	-	-	-	90.2	-	209.8	-	-	94.3	394.3
Nuclear	-	-	-	-	-	-	-	-	-	100.0	100.0
Geothermal	-	-	-	-	-	-	-	-	-	20.0	20.0
Biomass	-	-	-	-	-	-	-	-	-	64.4	64.4
Total	0.5	0.5	0.5	0.5	90.7	140.5	210.3	390.5	314.9	564.6	1,713.6
Cumulative Demand-Side Management											
Demand Response (MW)	13.6	15.1	18.8	26.5	31.9	36.6	40.6	44.6	48.4	51.6	
Energy Efficiency (aMW)	49.1	53.5	57.6	61.1	64.4	67.6	70.0	72.7	75.2	77.3	
Idaho (MW- Namenlate)											
Market	-	-	-	-	-	-	-	-	-	-	-
Regional Transmission	-	-	-	-	-	-	-	-	_	-	-
Natural Gas	-	-	-	-	90.2	-	94.9	-	_	-	185.1
Solar	_	-	-	-	-	-	-	-	-	-	-
Wind	_	-	-	_	-	-	-	-	-	_	-
Storage	_	-	-	_	-	_	-	-	-	_	-
Power to Gas	_	-	-	-	-	-	-	-	-	-	-
Nuclear	_	-	-	-	-	_	-	-	_	_	-
Geothermal	-	-	-	-	-	-	-	-	-	_	-
Biomass	-	-	-	-	-	-	-	-	-	3.2	3.2
Total	-	-	-	-	90.2	-	94.9	-	-	3.2	
Cumulative Demand-Side Management											
Demand Response (MW)	1.4	1.4	1.7	2.1	2.5	2.9	3.7	5.8	8.7	10.6	
Energy Efficiency (aMW)	18.2	20.0	21.7	23.2	24.6	25.9	27.0	28.2	29.3	30.4	
						4.40		407			

4

AVISTA

North Plains Connector

AVISTA

DRAFT

At the 7/16/2024 TAC Meeting: 300 MW of this resource was selected between 2037-45. It was discussed this resource cannot be acquired in increments and not all benefits were modeled at this time

Wind Selection Observations

- 850 MW of wind is selected between 2029-2033, this is a financially beneficial early action taking advantage of IRA benefits and low PPA prices.
 - If tax credits change or low priced PPA terms do not materialize, this selection will change.
 - Avista has limited transmission to integrate new wind in the service territory, if wind projects are exported off system, the PRS selection will reduce.
- Concerned with Montana Wind winter QCC could underestimate need for winter capability.
- Additional wind could be economic for Idaho customers, but the model allocates to Washington due to limited options to meet long-term CETA goals.

Demand Response

Program	Customer Segment	Washington Start Year	WA	ldaho Start Year	ID
Electric Vehicle TOU	Commercial	2026	8.8	2029	0.7
Battery Energy Storage	All	2026	10.4	2035	1.5
Variable Peak Pricing	Large Commercial	2026	5.4	2029	1.7
Peak Time Rebate	Residential/Sm. Com.	2035	5.5	2040	4.0
Behavioral	Residential/Sm. Com.	2038	1.9	2043	1.0
Time of Use Rates	Residential/Sm. Com.	2038	2.5		n/a
Third Party Contracts	Large Commercial	2039	18.0	2044	3.1
CTA ERWH	Residential/Sm. Com.	2041	3.4		n/a
Central A/C	Residential/Sm. Com.	2043	5.2		n/a
Total	MW by 2045 (Highest of S	ummer/Winter	61.2		12.0

Assumptions:

- Current industrial contract remains
- Idaho AMI by 2029
- Total savings assumes projects do not overlap into other programs
 - Totals include ramped savings to 2045, based on the time period the program was selected

Energy Efficiency Top Measure Types

Row Measure	State	2035	Row Measure	State	2035
1 Linear Lighting	WA	81.34	1 Linear Lighting	ID	43.34
2 Windows - High Efficiency (ENERGY STAR 7.0)	WA	27.98	2 High-Bay Lighting	ID	12.70
3 High-Bay Lighting	WA	25.00	3 Water Heater - Pipe Insulation	ID	7.90
4 Water Heater - Pipe Insulation	WA	18.13	4 Ducting - Repair and Sealing	ID	6.75
5 Ducting - Repair and Sealing	WA	17.70	5 Insulation - Ceiling Installation	ID	5.96
6 Ductless Mini Split Heat Pump	WA	17.11	6 Air-Source Heat Pump	ID	4.91
7 Air-Source Heat Pump	WA	16.05	7 Lodging - Guest Room Controls	ID	4.69
8 Water Heater (<= 55 Gal)	WA	13.69	8 Windows - Low-e Storm Addition	ID	4.34
9 Home Energy Reports	WA	10.43	9 Ventilation - Variable Speed Control	ID	4.27
10 Insulation - Ceiling Installation	WA	9.26	10 Home Energy Reports	ID	4.24
11 Ventilation - Variable Speed Control	WA	8.60	11 Grocery - Display Case - LED Lighting	ID	3.89
12 Advanced Industrial Motors	WA	7.81	12 Clothes Washer - CEE Tier 2	ID	3.60
13 Insulation - Wall Sheathing	WA	7.46	13 Fan System - Equipment Upgrade	ID	3.40
14 Windows - Low-e Storm Addition	WA	6.63	14 Refrigeration - High Efficiency Compressor	ID	3.24
15 Building Shell - Air Sealing (Infiltration Control)	WA	6.03	15 Kitchen Ventilation - Advanced Controls	ID	2.75
16 Kitchen Ventilation - Advanced Controls	WA	5.89	16 HVAC - Energy Recovery Ventilator	ID	2.66
17 Clothes Washer - CEE Tier 2	WA	5.70	17 Water Heater (<= 55 Gal)	ID	2.59
18 Strategic Energy Management	WA	5.38	18 General Service Lighting	ID	2.17
19 Insulation - Ceiling Upgrade	WA	5.16	19 Ventilation - Demand Controlled	ID	2.07
20 General Service Lighting	WA	4.90	20 Insulation - Ceiling Upgrade	ID	1.69
21 Pumping System - System Optimization	WA	4.89	21 Area Lighting	ID	1.68
22 HVAC - Energy Recovery Ventilator	WA	4.77	22 Water Heater - Faucet Aerators	ID	1.48
23 Fan System - Equipment Upgrade	WA	4.54	23 Furnace - Conversion to Air-Source Heat Pump	ID	1.32
24 Connected Thermostat - ENERGY STAR (1.0)	WA	4.49	24 Pumping System - System Optimization	ID	1.27
25 Refrigeration - High Efficiency Compressor	WA	3.98	25 Refrigeration - High Efficiency Evaporator Fan Motors	ID	1.26

Avista Transmission Considerations

- Rathdrum Area: New natural gas CTs begin in 2030, these are likely located in North Idaho, new transmission will be required, if projects continue to be sited in the area additional reinforcement is needed.
- **Off-System Imports:** Need to increase connections to markets/areas to reach additional wind to import by 2045.
- If within system renewables are exported off system, additional transmission within Avista BA will be needed.

DRAFT

Clean Energy Forecast

AIVISTA'

Average Energy Rate Forecast

Assumes non-modelled cost increase by 3.8% per year

AVISTA

DRAFT

Washington Energy Burden CBI

#2a: WA Customers with Excess Energy Burden (Before Energy Assistance)

#2b: Percent of WA Customers with Excess Energy Burden (Before Energy Assistance)

#2c: Average Excess Energy Burden (Before Energy Assistance)

AIVISTA'

DRAFT

DER Additions CBI

#5b: Total MWh Capability of DER Storage <5MW in Named Communities

AVISTA

WA Low Income/Named Community Investments CBI

DRAFT

DRAFT

Reserve Margin CBI

#7: Energy Availability- Reserve Margin

Notes:

•

- Regional Transmission not included in Reserve Margin
- Demand Response reduced from peak load

DRAFT

Generation Location CBI

#8: Generation in WA and/or Connected Transmission System (as a Percent of Generation)

AVISTA'

DRAFT

Washington Air Emissions CBI

AVISTA

DRAFT

WA Greenhouse Gas Emissions CBI

#10b: Regional Greenhouse Gas Emissions

AVISTA

DRAFT

Job Creation (Direct and Induced)

531 575 ⁶¹⁶ Jobs 392 412 62 ^{96 128 160 188 216 241 263 283 299 314 332}

Job estimates based on spending to job relationship today using INPLAN

AVISTA

Resource Diversity (Resource Resiliency Metrics)

Score	Metric Meaning
<1,500	Competitive Marketplace
1,500-2,500	Moderately Concentrated
>2,500	Highly Concentrated

Avoided Costs

	Washington						Idaho				
					Clean						Clean
	Flat	On-Peak	Off-Peak	Capacity	Capacity		Flat	On-Peak	Off-Peak	Capacity	Capacity
	Energy	Energy	Energy	Premium	Premium		Energy	Energy	Energy	Premium	Premium
Year	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/kW-Yr)	(\$/kW-Yr)	Year	(\$/MWh)	(\$/MWh)	(\$/MWh)	(\$/kW-Yr)	(\$/kW-Yr)
2026	\$41.98	\$40.46	\$43.12	\$0.0	\$0.0	2026	\$41.61	\$40.42	\$42.50	\$0.0	\$0.0
2027	\$38.14	\$38.58	\$37.82	\$0.0	\$0.0	2027	\$37.88	\$38.70	\$37.26	\$0.0	\$0.0
2028	\$35.40	\$37.03	\$34.18	\$0.0	\$0.0	2028	\$35.13	\$37.19	\$33.57	\$0.0	\$0.0
2029	\$35.04	\$36.64	\$33.84	\$0.0	\$0.0	2029	\$34.57	\$36.64	\$33.01	\$0.0	\$0.0
2030	\$39.18	\$40.90	\$37.89	\$27.2	\$82.4	2030	\$38.56	\$40.85	\$36.84	\$27.2	\$0.0
2031	\$44.10	\$46.40	\$42.38	\$27.8	\$84.1	2031	\$43.00	\$45.74	\$40.96	\$27.8	\$0.0
2032	\$44.33	\$47.09	\$42.27	\$28.3	\$85.8	2032	\$42.74	\$45.92	\$40.36	\$28.3	\$0.0
2033	\$45.40	\$48.29	\$43.23	\$28.9	\$87.5	2033	\$43.82	\$47.20	\$41.29	\$28.9	\$0.0
2034	\$45.55	\$48.72	\$43.17	\$29.5	\$59.8	2034	\$43.92	\$47.54	\$41.19	\$29.5	\$0.0
2035	\$46.71	\$49.96	\$44.27	\$30.0	\$61.0	2035	\$44.93	\$48.59	\$42.18	\$30.0	\$0.0
2036	\$46.40	\$49.74	\$43.90	\$30.6	\$62.2	2036	\$44.50	\$48.21	\$41.72	\$30.6	\$0.0
2037	\$47.66	\$51.45	\$44.82	\$31.3	\$63.4	2037	\$45.69	\$49.82	\$42.61	\$31.3	\$0.0
2038	\$47.77	\$51.51	\$44.98	\$31.9	\$64.7	2038	\$45.66	\$49.68	\$42.64	\$31.9	\$0.0
2039	\$48.48	\$52.35	\$45.58	\$32.5	\$66.0	2039	\$46.29	\$50.42	\$43.19	\$32.5	\$0.0
2040	\$49.59	\$53.79	\$46.43	\$33.2	\$67.3	2040	\$47.28	\$51.69	\$43.96	\$33.2	\$0.0
2041	\$50.01	\$54.44	\$46.68	\$33.8	\$68.6	2041	\$47.66	\$52.29	\$44.19	\$33.8	\$0.0
2042	\$52.31	\$56.90	\$48.88	\$34.5	\$70.0	2042	\$49.92	\$54.68	\$46.35	\$34.5	\$0.0
2043	\$52.97	\$57.66	\$49.45	\$35.2	\$71.4	2043	\$50.52	\$55.38	\$46.88	\$35.2	\$0.0
2044	\$53.84	\$58.61	\$50.27	\$35.9	\$72.8	2044	\$51.24	\$56.12	\$47.58	\$35.9	\$0.0
2045	\$55.07	\$59.83	\$51.48	\$36.6	\$74.3	2045	\$52.39	\$57.26	\$48.71	\$36.6	\$0.0
20 yr Levelized	\$44.13	\$46.60	\$42.27	\$21.28	\$49.93	20 yr Levelized	\$42.78	\$45.62	\$40.65	\$21.28	\$0.00

Capacity Credit is lower due to margin from wind projects, CT capacity payment is ~\$90/kW-yr

Portfolio Scenarios (includes changes)

Methodology	Load Scenarios	Resource Availability	Other
Alternative Lowest Reasonable Cost [only used for 2026-2029]	Low Growth	Clean Resource Portfolio by 2045	17% PRM (replaces lower WRAP PRM scenario)
Baseline Least Cost Portfolio [excludes CETA]	High Growth	500 MW Nuclear in 2030	30% PRM (replaces 0% LOLP scenario)
Minimal Viable CETA Target	RCP 8.5 Weather	Power to Gas Unavailable	Maximum Washington Customer Benefit
Maximum Viable CETA Target	80% Washington Building Electrification by 2045	Nuclear Cost Sensitivity	PRS w/ CCA repealed
PRS Constrained to the 2% Cost Cap (replaces unconstrained cost cap)	80% Washington Building Electrification by 2045 & High Transportation Electrification Scenario	High QCC on Demand Response	
	80% Washington Building Electrification by 2045 & High Transportation Electrification Scenario with RCP 8.5 Weather	Regional Transmission not Available	
	Extreme Building/Transportation Electrification for Washington & Idaho w/o new Natural Gas CTs	Northeast Early Retirement	
	Data Center in 2030	On-System Wind Limited to 200 MW	
		No IRA Tax Incentives	
**Proposed Portfolio Changes in Red			